Surface Modification and Alloying

Surface Modification and Alloying PDF Author: J.M. Poate
Publisher: Springer Science & Business Media
ISBN: 146133733X
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
This book is an outcome of the NATO institute on surface modification which was held in Trevi, 1981. Surface modification and alloying by ion, electron or laser beams is proving to be one of the most burgeoning areas of materials science. The field covers such diverse areas as integrated circuit processing to fabricating wear and corrosion resistant surfaces on mechanical components. The common scientific questions of interest are the microstructures by the different energy deposition techniques. and associated physical properties produced The chapters constitute a critical review of the various subjects covered at Trevi. Each chapter author took responsibility for the overall review and used contributions from the many papers presented at the meeting; each participant gave a presentation. The contributors are listed at the start of each chapter. We took this approach to get some order in a large and diverse field. We are indebted to all the contributors, in particular the chapter authors for working the many papers into coherent packages; to Jim Mayer for hosting a workshop of chapter authors at Cornell and to Ian Bubb who did a sterling job in working over some of the manuscripts. Our special thanks are due to the text processing center at Bell Labs who took on the task of assembling the book. In particular Karen Lieb and Beverly Heravi typed the whole manuscript and had the entire book phototypeset using the Bell Laboratories UNIXTM system.

Surface Modification and Alloying

Surface Modification and Alloying PDF Author: J.M. Poate
Publisher: Springer Science & Business Media
ISBN: 146133733X
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
This book is an outcome of the NATO institute on surface modification which was held in Trevi, 1981. Surface modification and alloying by ion, electron or laser beams is proving to be one of the most burgeoning areas of materials science. The field covers such diverse areas as integrated circuit processing to fabricating wear and corrosion resistant surfaces on mechanical components. The common scientific questions of interest are the microstructures by the different energy deposition techniques. and associated physical properties produced The chapters constitute a critical review of the various subjects covered at Trevi. Each chapter author took responsibility for the overall review and used contributions from the many papers presented at the meeting; each participant gave a presentation. The contributors are listed at the start of each chapter. We took this approach to get some order in a large and diverse field. We are indebted to all the contributors, in particular the chapter authors for working the many papers into coherent packages; to Jim Mayer for hosting a workshop of chapter authors at Cornell and to Ian Bubb who did a sterling job in working over some of the manuscripts. Our special thanks are due to the text processing center at Bell Labs who took on the task of assembling the book. In particular Karen Lieb and Beverly Heravi typed the whole manuscript and had the entire book phototypeset using the Bell Laboratories UNIXTM system.

Surface modification and alloying by laser, ion, and electron beams

Surface modification and alloying by laser, ion, and electron beams PDF Author: J. M. Poate
Publisher: Plenum Pub Corp
ISBN:
Category : Science
Languages : en
Pages : 414

Get Book Here

Book Description


Materials Surface Processing by Directed Energy Techniques

Materials Surface Processing by Directed Energy Techniques PDF Author: Yves Pauleau
Publisher: Elsevier
ISBN: 0080458963
Category : Technology & Engineering
Languages : en
Pages : 745

Get Book Here

Book Description
The current status of the science and technology related to coatings, thin films and surface modifications produced by directed energy techniques is assessed in Materials Surface Processing by Directed Energy Techniques. The subject matter is divided into 20 chapters - each presented at a tutorial level – rich with fundamental science and experimental results. New trends and new results are also evoked to give an overview of future developments and applications. - Provides a broad overview on modern coating and thin film deposition techniques, and their applications - Presents and discusses various problems of physics and chemistry involved in the production, characterization and applications of coatings and thin films - Each chapter includes experimental results illustrating various models, mechanisms or theories

Materials and Processes for Surface and Interface Engineering

Materials and Processes for Surface and Interface Engineering PDF Author: Y. Pauleau
Publisher: Springer Science & Business Media
ISBN: 9401100772
Category : Technology & Engineering
Languages : en
Pages : 652

Get Book Here

Book Description
Materials and Processes for Surface and Interface Engineering, which has been written by experts in the fields of deposition technology and surface modification techniques, offers up to date tutorial papers on the latest advances in surface and interface engineering. The emphasis is on fundamental aspects, principles and applications of plasma and ion beam processing technology. A handbook for the engineer and scientist as well as an introduction for students in several branches of materials science and surface engineering.

Surface Engineering

Surface Engineering PDF Author: Dheerendra Kumar Dwivedi
Publisher: Springer
ISBN: 813223779X
Category : Technology & Engineering
Languages : en
Pages : 234

Get Book Here

Book Description
This book is intended to help engineers analyze service condition and potential mechanisms of surface degradation. This will enable engineers select suitable materials for improved service-life and performance of engineering components. The book comprises 7 chapters, and is well illustrated with schematics, photographs, microstructure, XRD patterns, EDAX mapping, and technical data tables. The book focuses on the influence of materials and methods of surface engineering on structure, properties, and wear-performance of engineering components. It begins with the need to study the subject of surface engineering, scope of surface engineering, and classification of techniques of surface engineering. The book covers conventional material system (steel, cast iron, stellite, WC-Co, PCDs, etc.) and new materials like multilayer structures, functionally gradient materials (FGMs), intermetallic barrier coatings, and thermal barrier coating. The book covers most conventional as well as advanced surface engineering techniques, such as burnishing, shot peening, flame and induction hardening, laser and electron beam hardening, plasma and TIG melting, carburizing, nitriding, cyaniding, boronizing, vanadizing, ion implantation, laser alloying, chemical vapor deposition, PE chemical vapor deposition, physical vapor deposition, weld overlays, laser cladding, hot dip galvanizing, hot dip lead tin coating, hot dip aluminizing, hot dip chromizing, electroplating, electroless plating (Ni-P and Ni-B), mechanical plating, roll bonding, explosive bonding, and hot isostatic. The book also includes an introductory chapter on friction-stir processing of aluminum and titanium alloys. Further, it discusses studies on structure, mechanical and wear properties of weld surfacing, flame spray coating, HVOF sprayed coating, laser cladding of ferrous metals, nickel and cobalt based alloys and their composites in as-sprayed and heat-treated conditions. The book provides a comprehensive overview of various destructive and nondestructive techniques used for characterization of engineered surfaces. The materials in the book will be useful to undergraduate and graduate students. In addition, the contents of this book can also be used for professional development courses for practicing engineers.

Laser Processing and Chemistry

Laser Processing and Chemistry PDF Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3662040743
Category : Science
Languages : en
Pages : 788

Get Book Here

Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This third edition has been revised and enlarged to cover new topics such as the synthesis of nanoclusters and nanocrystalline films, ultrashort-pulse laser processing, laser polishing, cleaning, and lithography. Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems

Multiscale Biomechanics and Tribology of Inorganic and Organic Systems PDF Author: Georg-Peter Ostermeyer
Publisher: Springer Nature
ISBN: 3030601242
Category : Science
Languages : en
Pages : 571

Get Book Here

Book Description
This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic.

Laser Induced Damage in Optical Materials, 1981

Laser Induced Damage in Optical Materials, 1981 PDF Author:
Publisher:
ISBN:
Category : Laser materials
Languages : en
Pages : 656

Get Book Here

Book Description


Laser Induced Damage In Optical Materials: 1981

Laser Induced Damage In Optical Materials: 1981 PDF Author: Harold E. Bennett
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 656

Get Book Here

Book Description


Surface Modeling Engineering

Surface Modeling Engineering PDF Author: Ram Kossowsky
Publisher: CRC Press
ISBN: 9780849347696
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
These volumes present the general parctitioners in engineering with a comprehensive discussion of technological surfaces, their interactions with environments, and the various modification techniques available to improve their performance. In each subject, applications to metals, ceramics, and polymers are emphasized. The interactions with the environment are described: corrosion (chemical), friction and waer (mechanical), and bioreactivity (physiological). Reviews of major modification schemes such as chemical vapor deposition, physical vapor deposition, laser beam interactions, chemical infusion, and ion implantation are presented. In summary, reviews of applications of the modification techniques to optimize the performances of structural components, tools, electronic devices, and implantable medical devices, manufactured out of metals, ceramic, and polymers, are described.