Author: Asim Gangopadhyaya
Publisher: World Scientific Publishing Company
ISBN: 9813221062
Category : Science
Languages : en
Pages : 294
Book Description
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
Supersymmetric Quantum Mechanics: An Introduction (Second Edition)
Author: Asim Gangopadhyaya
Publisher: World Scientific Publishing Company
ISBN: 9813221062
Category : Science
Languages : en
Pages : 294
Book Description
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
Publisher: World Scientific Publishing Company
ISBN: 9813221062
Category : Science
Languages : en
Pages : 294
Book Description
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
Supersymmetric Quantum Mechanics
Author: Asim Gangopadhyaya
Publisher:
ISBN: 9789813221055
Category : Electronic books
Languages : en
Pages : 294
Book Description
Publisher:
ISBN: 9789813221055
Category : Electronic books
Languages : en
Pages : 294
Book Description
Introduction to Quantum Mechanics
Author: S.M. Blinder
Publisher: Academic Press
ISBN: 0128223111
Category : Science
Languages : en
Pages : 436
Book Description
Introduction to Quantum Mechanics, 2nd Edition provides an accessible, fully updated introduction to the principles of quantum mechanics. It outlines the fundamental concepts of quantum theory, discusses how these arose from classic experiments in chemistry and physics, and presents the quantum-mechanical foundations of current scientific developments.Beginning with a solid introduction to the key principles underpinning quantum mechanics in Part 1, the book goes on to expand upon these in Part 2, where fundamental concepts such as molecular structure and chemical bonding are discussed. Finally, Part 3 discusses applications of this quantum theory across some newly developing applications, including chapters on Density Functional Theory, Statistical Thermodynamics and Quantum Computing.Drawing on the extensive experience of its expert author, Introduction to Quantum Mechanics, 2nd Edition is a lucid introduction to the principles of quantum mechanics for anyone new to the field, and a useful refresher on fundamental knowledge and latest developments for those varying degrees of background. - Presents a fully updated accounting that reflects the most recent developments in Quantum Theory and its applications - Includes new chapters on Special Functions, Density Functional Theory, Statistical Thermodynamics and Quantum Computers - Presents additional problems and exercises to further support learning
Publisher: Academic Press
ISBN: 0128223111
Category : Science
Languages : en
Pages : 436
Book Description
Introduction to Quantum Mechanics, 2nd Edition provides an accessible, fully updated introduction to the principles of quantum mechanics. It outlines the fundamental concepts of quantum theory, discusses how these arose from classic experiments in chemistry and physics, and presents the quantum-mechanical foundations of current scientific developments.Beginning with a solid introduction to the key principles underpinning quantum mechanics in Part 1, the book goes on to expand upon these in Part 2, where fundamental concepts such as molecular structure and chemical bonding are discussed. Finally, Part 3 discusses applications of this quantum theory across some newly developing applications, including chapters on Density Functional Theory, Statistical Thermodynamics and Quantum Computing.Drawing on the extensive experience of its expert author, Introduction to Quantum Mechanics, 2nd Edition is a lucid introduction to the principles of quantum mechanics for anyone new to the field, and a useful refresher on fundamental knowledge and latest developments for those varying degrees of background. - Presents a fully updated accounting that reflects the most recent developments in Quantum Theory and its applications - Includes new chapters on Special Functions, Density Functional Theory, Statistical Thermodynamics and Quantum Computers - Presents additional problems and exercises to further support learning
Supersymmetric Methods in Quantum, Statistical and Solid State Physics
Author: Georg Junker
Publisher: Programme: Iop Expanding Physi
ISBN: 9780750320245
Category : Science
Languages : en
Pages : 250
Book Description
Building on the earlier edition it now encapsulates the substantial developments that have been made in supersymmetric quantum mechanics in recent years. Aimed at graduate students and scientists this book provides a thorough review supersymmetric quantum mechanics and now includes problems and solutions.
Publisher: Programme: Iop Expanding Physi
ISBN: 9780750320245
Category : Science
Languages : en
Pages : 250
Book Description
Building on the earlier edition it now encapsulates the substantial developments that have been made in supersymmetric quantum mechanics in recent years. Aimed at graduate students and scientists this book provides a thorough review supersymmetric quantum mechanics and now includes problems and solutions.
Introduction To Supersymmetry (2nd Edition)
Author: Harald J W Muller-kirsten
Publisher: World Scientific Publishing Company
ISBN: 9813100966
Category : Science
Languages : en
Pages : 452
Book Description
Supersymmetry is a symmetry which combines bosons and fermions in the same multiplet of a larger group which unites the transformations of this symmetry with that of spacetime. Thus every bosonic particle must have a fermionic partner and vice versa. Since this is not what is observed, this symmetry with inherent theoretical advantages must be badly broken. It is hoped that the envisaged collider experiments at CERN will permit a first experimental test, which is expected to revive the interest in supersymmetry considerably.This revised edition of the highly successful text of 20 years ago provides an introduction to supersymmetry, and thus begins with a substantial chapter on spacetime symmetries and spinors. Following this, graded algebras are introduced, and thereafter the supersymmetric extension of the spacetime Poincaré algebra and its representations. The Wess-Zumino model, superfields, supersymmetric Lagrangians, and supersymmetric gauge theories are treated in detail in subsequent chapters. Finally the breaking of supersymmetry is addressed meticulously. All calculations are presented in detail so that the reader can follow every step.
Publisher: World Scientific Publishing Company
ISBN: 9813100966
Category : Science
Languages : en
Pages : 452
Book Description
Supersymmetry is a symmetry which combines bosons and fermions in the same multiplet of a larger group which unites the transformations of this symmetry with that of spacetime. Thus every bosonic particle must have a fermionic partner and vice versa. Since this is not what is observed, this symmetry with inherent theoretical advantages must be badly broken. It is hoped that the envisaged collider experiments at CERN will permit a first experimental test, which is expected to revive the interest in supersymmetry considerably.This revised edition of the highly successful text of 20 years ago provides an introduction to supersymmetry, and thus begins with a substantial chapter on spacetime symmetries and spinors. Following this, graded algebras are introduced, and thereafter the supersymmetric extension of the spacetime Poincaré algebra and its representations. The Wess-Zumino model, superfields, supersymmetric Lagrangians, and supersymmetric gauge theories are treated in detail in subsequent chapters. Finally the breaking of supersymmetry is addressed meticulously. All calculations are presented in detail so that the reader can follow every step.
Supersymmetry in Quantum Mechanics
Author: Fred Cooper
Publisher: World Scientific
ISBN: 9789810246129
Category : Science
Languages : en
Pages : 226
Book Description
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by students in advanced undergraduate quantum mechanics courses. Problems have been given at the end of each chapter, along with complete solutions to all the problems. The text also includes material of interest in current research not usually discussed in traditional courses on quantum mechanics, such as the connection between exact solutions to classical solution problems and isospectral quantum Hamiltonians, and the relation to the inverse scattering problem.
Publisher: World Scientific
ISBN: 9789810246129
Category : Science
Languages : en
Pages : 226
Book Description
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by students in advanced undergraduate quantum mechanics courses. Problems have been given at the end of each chapter, along with complete solutions to all the problems. The text also includes material of interest in current research not usually discussed in traditional courses on quantum mechanics, such as the connection between exact solutions to classical solution problems and isospectral quantum Hamiltonians, and the relation to the inverse scattering problem.
Quantum and Non-Commutative Analysis
Author: Huzihiro Araki
Publisher: Springer Science & Business Media
ISBN: 9401728232
Category : Science
Languages : en
Pages : 452
Book Description
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held.
Publisher: Springer Science & Business Media
ISBN: 9401728232
Category : Science
Languages : en
Pages : 452
Book Description
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held.
Bridge Engineering Handbook, Five Volume Set, Second Edition
Author: Wai-Fah Chen
Publisher: CRC Press
ISBN: 1482263459
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection provides detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject, and also highlights bridges from around the world. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, and presents various types of bridges. The text includes over 2,500 tables, charts, illustrations, and photos. The book covers new, innovative and traditional methods and practices; explores rehabilitation, retrofit, and maintenance; and examines seismic design and building materials. This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.
Publisher: CRC Press
ISBN: 1482263459
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection provides detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject, and also highlights bridges from around the world. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, and presents various types of bridges. The text includes over 2,500 tables, charts, illustrations, and photos. The book covers new, innovative and traditional methods and practices; explores rehabilitation, retrofit, and maintenance; and examines seismic design and building materials. This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.
Introduction to Superstrings
Author: Michio Kaku
Publisher: Springer Science & Business Media
ISBN: 1468403192
Category : Science
Languages : en
Pages : 579
Book Description
We are all agreed that your theory is crazy. The question which divides us is whether it is crazy enough. Niels Bohr Superstring theory has emerged as the most promising candidate for a quan tum theory of all known interactions. Superstrings apparently solve a problem that has defied solution for the past 50 years, namely the unification of the two great fundamental physical theories of the century, quantum field theory and general relativity. Superstring theory introduces an entirely new physical picture into theoretical physics and a new mathematics that has startled even the mathematicians. Ironically, although superstring theory is supposed to provide a unified field theory of the universe, the theory itself often seems like a confused jumble offolklore, random rules of thumb, and intuition. This is because the develop ment of superstring theory has been unlike that of any other theory, such as general relativity, which began with a geometry and an action and later evolved into a quantum theory. Superstring theory, by contrast, has been evolving backward for the past 20 years. It has a bizarre history, beginning with the purely accidental discovery of the quantum theory in 1968 by G. Veneziano and M. Suzuki. Thumbing through old math books, they stumbled by chance on the Beta function, written down in the last century by mathematician Leonhard Euler.
Publisher: Springer Science & Business Media
ISBN: 1468403192
Category : Science
Languages : en
Pages : 579
Book Description
We are all agreed that your theory is crazy. The question which divides us is whether it is crazy enough. Niels Bohr Superstring theory has emerged as the most promising candidate for a quan tum theory of all known interactions. Superstrings apparently solve a problem that has defied solution for the past 50 years, namely the unification of the two great fundamental physical theories of the century, quantum field theory and general relativity. Superstring theory introduces an entirely new physical picture into theoretical physics and a new mathematics that has startled even the mathematicians. Ironically, although superstring theory is supposed to provide a unified field theory of the universe, the theory itself often seems like a confused jumble offolklore, random rules of thumb, and intuition. This is because the develop ment of superstring theory has been unlike that of any other theory, such as general relativity, which began with a geometry and an action and later evolved into a quantum theory. Superstring theory, by contrast, has been evolving backward for the past 20 years. It has a bizarre history, beginning with the purely accidental discovery of the quantum theory in 1968 by G. Veneziano and M. Suzuki. Thumbing through old math books, they stumbled by chance on the Beta function, written down in the last century by mathematician Leonhard Euler.
Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields
Author: Asao Arai
Publisher: Springer Nature
ISBN: 9811956782
Category : Science
Languages : en
Pages : 123
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Publisher: Springer Nature
ISBN: 9811956782
Category : Science
Languages : en
Pages : 123
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.