Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy

Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy PDF Author: Jeffrey W. Peng
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description

Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy

Studies of Protein Dynamics Using Heteronuclear Two-dimensional Nuclear Magnetic Resonance Spectroscopy PDF Author: Jeffrey W. Peng
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description


Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain

Improved Methods for Characterization of Protein Dynamics by NMR spectroscopy and Studies of the EphB2 Kinase Domain PDF Author: Alexandra Ahlner
Publisher: Linköping University Electronic Press
ISBN: 9175191032
Category : Nuclear magnetic resonance spectroscopy
Languages : en
Pages : 79

Get Book Here

Book Description
Proteins are essential for all known forms of life and in many lethal diseases protein failure is the cause of the disease. To understand proteins and the processes they are involved in, it is valuable to know their structures as well as their dynamics and interactions. The structures may not be directly inspected because proteins are too small to be visible in a light microscope, which is why indirect methods such as nuclear magnetic resonance (NMR) spectroscopy have to be utilized. This method provides atomic information about the protein and, in contrast to other methods with similar resolution, the measurements are performed in solution resulting in more physiological conditions, enabling analysis of dynamics. Important dynamical processes are the ones on the millisecond timeframe, which may contribute to interactions of proteins and their catalysis of chemical reactions, both of significant value for the function of the proteins. To better understand proteins, not only do we need to study them, but also develop the methods we are using. This thesis presents four papers about improved NMR techniques as well as a fifth where the kinase domain of ephrinB receptor 2 (EphB2) has been studied regarding the importance of millisecond dynamics and interactions for the activation process. The first paper presents the software COMPASS, which combines statistics and the calculation power of a computer with the flexibility and experience of the user to facilitate and speed up the process of assigning NMR signals to the atoms in the protein. The computer program PINT has been developed for easier and faster evaluation of NMR experiments, such as those that evaluate protein dynamics. It is especially helpful for NMR signals that are difficult to distinguish, so called overlapped peaks, and the soft- ware also converts the detected signals to the indirectly measured physical quantities, such as relaxation rate constants, principal for dynamics. Next are two new versions of the Carr-Purcell-Maiboom-Gill (CPMG) dispersion pulse sequences, designed to measure millisecond dynamics in a way so that the signals are more separated than in standard experiments, to reduce problems with overlaps. To speed up the collection time of the data set, a subset is collected and the entire data set is then reconstructed, by multi-dimensional decomposition co-processing. Described in the thesis is also a way to produce suitably labeled proteins, to detect millisecond dynamics at C? positions in proteins, using the CPMG dispersion relaxation experiment at lower protein concentrations. Lastly, the kinase domain of EphB2 is shown to be more dynamic on the millisecond time scale as well as more prone to interact with itself in the active form than in the inactive one. This is important for the receptor function of the protein, when and how it mediates signals. To conclude, this work has extended the possibilities to study protein dynamics by NMR spectroscopy and contributed to increased understanding of the activation process of EphB2 and its signaling mechanism.

Studies in Protein Dynamics Using Heteronuclear Nuclear Magnetic Resonance Spectroscopy

Studies in Protein Dynamics Using Heteronuclear Nuclear Magnetic Resonance Spectroscopy PDF Author: Liliya Vugmeyster
Publisher:
ISBN:
Category : Nuclear magnetic resonance spectroscopy
Languages : en
Pages : 200

Get Book Here

Book Description


Biological NMR Spectroscopy

Biological NMR Spectroscopy PDF Author: John L. Markley
Publisher: Oxford University Press
ISBN: 0195357426
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.

Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy

Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy PDF Author: Jeffrey C. Hoch
Publisher: Springer
ISBN:
Category : Medical
Languages : en
Pages : 488

Get Book Here

Book Description
Without computers - no modern NMR; Parametric estimation in 1-D, 2-D, and 3-D NMR; Computational aspects of multinuclear NMR spectroscopy of proteins at NMRFAM; Principles of multidimensional NMR techniques for measurement of J coupling constants; Comparison of the NMR and X-ray structures of hirudin; The application of the linear prediction principle to NMR spectroscopy; NMR data processing and structure calculations using parallel computers; Software approaches for determination of 3-dimensional molecular structures from multi-dimensional NMR; Applicability and limitations of three-dimensional NMR spectroscopy for the study of proteins in solution; The role of selective two-dimensional NMR correlation methods in supplementing computer-supported multiplet analysis by MARCO POLO; Application of maximum entropy methods to NMR spectra of proteins; Pattern recognition in two-dimensional NMR spectra of proteins; The application and development of software tools for the processinf and analysis of heteronuclear multi-dimensional NMR data; Distance geometry in torsion angle space: new developments and applications; Structure determination by NMR: the modeling of NMR parameters as ensemble averages; Time averaged distance restraints in NMR based structural refinement; Analysis of backbone dynamics of interleukin-1 beta; A new version of DADAS (Distance Analysis in Dihedral Angle Space) and its performance; An amateur looks at error analysis in the determination of protein structure by NMR; Structural interpretation of NMR data in the presence of motion; New interactive and automatic algorithms for the assignment of NMR spectra; Outline of a computer program for the analysis of protein NMR spectra; Assignment of the NMR spectra of homologous proteins; Incorporation of internal motion in NMR refinements based on NOESY data; Refinement of three-dimensional protein and DNA structures in solution from NMR data; How to deal with spin-diffusion and internal mobility in biomolecules: a relaxation matrix approach; Interactive computer graphics in the assignment of protein 2D and 3D NMR spectra; Determination of large protein structures from NMR data: definition of the solution structure of the TRP repressor; Interpretation of NMR data in terms of protein structure: summary of a round table discussion; Fast calculation of the relaxation matrix; NMR structures of proteins using stereospecific assignments and relaxation matrix refinement in a hybrid method of distance geometry and simulated annealing; A critique of the interpretation of nuclear Overhauser effects of duplex DNA; Improvement in resolution with nonlinear methods applied to NMR signals from macromolecules; STELLA and CLAIRE: a seraglio of programs for human-aided assignment of 2D 1H NMR spectra of proteins; MolSkop: towards NMR molecular scope; Ribonuclease H: full assignment of backbone proton resonances with heteronuclear 3D NMR and solution structure; Sampling properties of simulated annealing and distance geometry.

Fundamentals of Protein NMR Spectroscopy

Fundamentals of Protein NMR Spectroscopy PDF Author: Gordon S. Rule
Publisher: Springer Science & Business Media
ISBN: 1402035004
Category : Science
Languages : en
Pages : 543

Get Book Here

Book Description
NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.

Two-Dimensional (2D) NMR Methods

Two-Dimensional (2D) NMR Methods PDF Author: K. L. Ivanov
Publisher: John Wiley & Sons
ISBN: 1119806712
Category : Science
Languages : en
Pages : 597

Get Book Here

Book Description
TWO-DIMENSIONAL (2D) NMR METHODS Practical guide explaining the fundamentals of 2D-NMR for experienced scientists as well as relevant for advanced students Two-Dimensional (2D) NMR Methods is a focused work presenting an overview of 2D-NMR concepts and techniques, including basic principles, practical applications, and how NMR pulse sequences work. Contributed to by global experts with extensive experience in the field, Two-Dimensional (2D) NMR Methods provides in-depth coverage of sample topics such as: Basics of 2D-NMR, data processing methods (Fourier and beyond), product operator formalism, basics of spin relaxation, and coherence transfer pathways Multidimensional methods (single- and multiple-quantum spectroscopy), NOESY (principles and applications), and DOSY methods Multiple acquisition strategies, anisotropic NMR in molecular analysis, ultrafast 2D methods, and multidimensional methods in bio-NMR TROSY (principles and applications), field-cycling and 2D NMR, multidimensional methods and paramagnetic NMR, and relaxation dispersion experiments This text is a highly useful resource for NMR specialists and advanced students studying NMR, along with users in research, academic and commercial laboratories that study or conduct experiments in NMR.

Experimental Approaches of NMR Spectroscopy

Experimental Approaches of NMR Spectroscopy PDF Author: The Nuclear Magnetic Resonance Society of Japan
Publisher: Springer
ISBN: 9811059667
Category : Science
Languages : en
Pages : 634

Get Book Here

Book Description
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.

The Handbook of Metabonomics and Metabolomics

The Handbook of Metabonomics and Metabolomics PDF Author: John C. Lindon
Publisher: Elsevier
ISBN: 0080468004
Category : Science
Languages : en
Pages : 573

Get Book Here

Book Description
Molecular biology operates at three levels – genes, proteins and metabolites. This book is unique in that it provides a comprehensive description of an approach (metabonomics) to characterise the endogenous metabolites in a living system, complementing gene and protein studies (genomics and proteomics). These "omics" methods form the basis for understanding biology at a systems level. The Handbook of Metabonomics and Metabolomics aims to be the definitive work on the rapidly expanding subjects of metabolic profiling, metabolite and biomarker identification, encompassing the fields of metabonomics and metabolomics. It covers the principles of the subject, the analytical and statistical techniques used and the wide variety of applications.* comprehensive description of an approach (metabonomics) to characterise the endogenous metabolites in a living system, complementing gene and protein studies* aims to be the definitive work on the rapidly expanding subjects of metabolic profiling, metabolite and biomarker identification* covers the principles of the subject, the analytical and statistical techniques used and the wide variety of applications.

Protein NMR Techniques

Protein NMR Techniques PDF Author: A. Kristina Downing
Publisher: Springer Science & Business Media
ISBN: 1592598099
Category : Science
Languages : en
Pages : 494

Get Book Here

Book Description
When I was asked to edit the second edition of Protein NMR Techniques, my first thought was that the time was ripe for a new edition. The past several years have seen a surge in the development of novel methods that are truly revolutionizing our ability to characterize biological macromolecules in terms of speed, accuracy, and size limitations. I was particularly excited at the prospect of making these techniques accessible to all NMR labs and for the opportunity to ask the experts to divulge their hints and tips and to write, practically, about the methods. I commissioned 19 chapters with wide scope for Protein NMR Techniques, and the volume has been organized with numerous themes in mind. Chapters 1 and 2 deal with recombinant protein expression using two organisms, E. coli and P. pastoris, that can produce high yields of isotopically labeled protein at a reasonable cost. Staying with the idea of isotopic labeling, Chapter 3 describes methods for perdeuteration and site-specific protonation and is the first of several chapters in the book that is relevant to studies of higher molecular weight systems. A different, but equally powerful, method that uses molecular biology to “edit” the spectrum of a large molecule using segmental labeling is presented in Chapter 4. Having successfully produced a high molecular weight target for study, the next logical step is data acquisition. Hence, the final chapter on this theme, Chapter 5, describes TROSY methods for stru- ural studies.