Structured Ring Spectra

Structured Ring Spectra PDF Author: Andrew Baker
Publisher: Cambridge University Press
ISBN: 9780521603058
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
This book contains some important new contributions to the theory of structured ring spectra.

Structured Ring Spectra

Structured Ring Spectra PDF Author: Andrew Baker
Publisher: Cambridge University Press
ISBN: 9780521603058
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
This book contains some important new contributions to the theory of structured ring spectra.

Stable Categories and Structured Ring Spectra

Stable Categories and Structured Ring Spectra PDF Author: Andrew J. Blumberg
Publisher: Cambridge University Press
ISBN: 1009123297
Category : Mathematics
Languages : en
Pages : 441

Get Book Here

Book Description
A graduate-level introduction to the homotopical technology in use at the forefront of modern algebraic topology.

Rings, Modules, and Algebras in Stable Homotopy Theory

Rings, Modules, and Algebras in Stable Homotopy Theory PDF Author: Anthony D. Elmendorf
Publisher: American Mathematical Soc.
ISBN: 0821843036
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
This book introduces a new point-set level approach to stable homotopy theory that has already had many applications and promises to have a lasting impact on the subject. Given the sphere spectrum $S$, the authors construct an associative, commutative, and unital smash product in a complete and cocomplete category of ``$S$-modules'' whose derived category is equivalent to the classical stable homotopy category. This construction allows for a simple and algebraically manageable definition of ``$S$-algebras'' and ``commutative $S$-algebras'' in terms of associative, or associative and commutative, products $R\wedge SR \longrightarrow R$. These notions are essentially equivalent to the earlier notions of $A {\infty $ and $E {\infty $ ring spectra, and the older notions feed naturally into the new framework to provide plentiful examples. There is an equally simple definition of $R$-modules in terms of maps $R\wedge SM\longrightarrow M$. When $R$ is commutative, the category of $R$-modules also has a

H Ring Spectra and Their Applications

H Ring Spectra and Their Applications PDF Author: Robert R. Bruner
Publisher: Springer
ISBN: 3540397787
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description


Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups

Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups PDF Author: John Rognes
Publisher: American Mathematical Soc.
ISBN: 0821840762
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.

Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures

Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures PDF Author:
Publisher: World Scientific
ISBN: 9814324353
Category :
Languages : en
Pages : 814

Get Book Here

Book Description


Global Homotopy Theory

Global Homotopy Theory PDF Author: Stefan Schwede
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847

Get Book Here

Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.

Equivariant Orthogonal Spectra and S-modules

Equivariant Orthogonal Spectra and S-modules PDF Author: M. A. Mandell
Publisher: American Mathematical Soc.
ISBN: 9780821864777
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
The last few years have seen a revolution in our understanding of the foundations of stable homotopy theory. Many symmetric monoidal model categories of spectra whose homotopy categories are equivalent to the stable homotopy category are now known, whereas no such categories were known before 1993. The most well-known examples are the category of $S$-modules and the category of symmetric spectra. We focus on the category of orthogonal spectra, which enjoys some of the best features of $S$-modules and symmetric spectra and which is particularly well-suited to equivariant generalization. We first complete the nonequivariant theory by comparing orthogonal spectra to $S$-modules. We then develop the equivariant theory. For a compact Lie group $G$, we construct a symmetric monoidal model category of orthogonal $G$-spectra whose homotopy category is equivalent to the classical stable homotopy category of $G$-spectra. We also complete the theory of $S_G$-modules and compare the categories of orthogonal $G$-spectra and $S_G$-modules. A key feature is the analysis of change of universe, change of group, fixed point, and orbit functors in these two highly structured categories for the study of equivariant stable homotopy theory.

Stable Homotopy and Generalised Homology

Stable Homotopy and Generalised Homology PDF Author: John Frank Adams
Publisher: University of Chicago Press
ISBN: 0226005240
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.

Complex Cobordism and Stable Homotopy Groups of Spheres

Complex Cobordism and Stable Homotopy Groups of Spheres PDF Author: Douglas C. Ravenel
Publisher: American Mathematical Soc.
ISBN: 082182967X
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.