Structural Lie

Structural Lie PDF Author: Charles C. Lemert
Publisher: Routledge
ISBN: 1317251342
Category : Social Science
Languages : en
Pages : 257

Get Book Here

Book Description
The Structural Lie tackles one of social science's most mysterious problems. How is it possible to derive statements about the grand structures of social life from their effects in the small movements of everyday life? Prominent sociologist Charles Lemert shows how Marx and Freud provide some answers to this question. Marx derived from the commodity his picture of the capitalist system, Freud diagnosed the character of psyches from the details of dreams, slips and jokes. This wonderfully readable and engaging book lays the foundation for a new social science in an age where a microchip can convey a world of information.

Structural Lie

Structural Lie PDF Author: Charles C. Lemert
Publisher: Routledge
ISBN: 1317251342
Category : Social Science
Languages : en
Pages : 257

Get Book Here

Book Description
The Structural Lie tackles one of social science's most mysterious problems. How is it possible to derive statements about the grand structures of social life from their effects in the small movements of everyday life? Prominent sociologist Charles Lemert shows how Marx and Freud provide some answers to this question. Marx derived from the commodity his picture of the capitalist system, Freud diagnosed the character of psyches from the details of dreams, slips and jokes. This wonderfully readable and engaging book lays the foundation for a new social science in an age where a microchip can convey a world of information.

Structure and Geometry of Lie Groups

Structure and Geometry of Lie Groups PDF Author: Joachim Hilgert
Publisher: Springer Science & Business Media
ISBN: 0387847944
Category : Mathematics
Languages : en
Pages : 742

Get Book Here

Book Description
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.

Lie's Structural Approach to PDE Systems

Lie's Structural Approach to PDE Systems PDF Author: Olle Stormark
Publisher: Cambridge University Press
ISBN: 9780521780889
Category : Mathematics
Languages : en
Pages : 604

Get Book Here

Book Description
Here is a lucid and comprehensive introduction to the differential geometric study of partial differential equations (PDE). The first book to present substantial results on local solvability of general and nonlinear PDE systems without using power series techniques, it describes a general approach to PDE systems based on ideas developed by Lie, Cartan and Vessiot. The central theme is the exploitation of singular vector field systems and their first integrals. These considerations naturally lead to local Lie groups, Lie pseudogroups and the equivalence problem, all of which are covered in detail. This book will be a valuable resource for graduate students and researchers in partial differential equations, Lie groups and related fields.

Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras PDF Author: Antonio Fernández López
Publisher:
ISBN: 9781470453626
Category :
Languages : en
Pages : 314

Get Book Here

Book Description
This book explores applications of Jordan theory to the theory of Lie algebras. It begins with the general theory of nonassociative algebras and of Lie algebras and then focuses on properties of Jordan elements of special types. Then it proceeds to the core of the book, in which the author explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself. One of the special features of this book is that it carefully explains Zelmanov's seminal results on infinite-dimensional Lie algebras from this point of vie.

Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics

Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics PDF Author: Peter Betsch
Publisher: Springer
ISBN: 3319318799
Category : Technology & Engineering
Languages : en
Pages : 298

Get Book Here

Book Description
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.

The Structure of Complex Lie Groups

The Structure of Complex Lie Groups PDF Author: Dong Hoon Lee
Publisher: CRC Press
ISBN: 1420035452
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts

Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras PDF Author: Antonio Fernández López
Publisher: American Mathematical Soc.
ISBN: 1470450860
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.

A Guide To Lie Systems With Compatible Geometric Structures

A Guide To Lie Systems With Compatible Geometric Structures PDF Author: Javier De Lucas Araujo
Publisher: World Scientific
ISBN: 1786346990
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
The book presents a comprehensive guide to the study of Lie systems from the fundamentals of differential geometry to the development of contemporary research topics. It embraces several basic topics on differential geometry and the study of geometric structures while developing known applications in the theory of Lie systems. The book also includes a brief exploration of the applications of Lie systems to superequations, discrete systems, and partial differential equations.Offering a complete overview from the topic's foundations to the present, this book is an ideal resource for Physics and Mathematics students, doctoral students and researchers.

Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations PDF Author: Brian Hall
Publisher: Springer
ISBN: 3319134671
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

The Structure of Lie Groups

The Structure of Lie Groups PDF Author: Gerhard P Hochschild
Publisher:
ISBN: 9784871871624
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
The Structure of Lie Groups presents the basic part of the Lie group theory in a self contained exposition. The main emphasis is put on the use of Lie algebras in dealing with the structural and representation-theoretical features of Lie groups.