Author: V. Kovarik
Publisher: Elsevier
ISBN: 1483291774
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Shell structures are key components in a very wide range of engineering enterprises. The theory of layered shells of revolution under the quasistatic action of loading and temperature is the subject of this book. The shells treated here are in general of an asymmetric sandwich structure. A linear theory is developed which allows for a transition to shells with less layers, that is two-layered and homogeneous structures.The first half of the book is concerned with orthotropic elastic shells. In particular, it includes the membrane theory of cylindrical, spherical and conical shells, and the bending theory of cylindrical shells, storage tanks and pressure-vessels. In each of the numerical examples considered, an attempt is made to map different regimes of structural behaviour.The second half of the book is devoted to viscoelastic shells. First the time-invariant hereditary theory is presented, describing the response of viscoelastic materials. According to the correspondence principle of this theory the actual viscoelastic shell may be replaced by a conjugate elastic one. In this way many of the results from the first half of the book can be put to good use even for viscoelastic shells. The time-dependent material characteristics are taken into account by means of the time-temperature principle.In an appendix (Part VI), the mathematical prerequisites are presented. With viscoelasticity comes the need to employ further mathematical disciplines; integral equations and integral transformations are usually encountered. Here, instead, a different concept has been chosen, the distributional concept of Laurent Schwartz, which allows many problems to be tackled in a simple formal way. In discussing the distribution theory, a level accessible to a technical reader has been maintained.The book is intended as a textbook for students and teachers of structural and aeronautical engineering. The book will also appeal to a broad range of practising engineers working in areas of aeronautical, civil, and mechanical engineering, as well as to those working for firms dealing with shell structures.
Stresses in Layered Shells of Revolution
Author: V. Kovarik
Publisher: Elsevier
ISBN: 1483291774
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Shell structures are key components in a very wide range of engineering enterprises. The theory of layered shells of revolution under the quasistatic action of loading and temperature is the subject of this book. The shells treated here are in general of an asymmetric sandwich structure. A linear theory is developed which allows for a transition to shells with less layers, that is two-layered and homogeneous structures.The first half of the book is concerned with orthotropic elastic shells. In particular, it includes the membrane theory of cylindrical, spherical and conical shells, and the bending theory of cylindrical shells, storage tanks and pressure-vessels. In each of the numerical examples considered, an attempt is made to map different regimes of structural behaviour.The second half of the book is devoted to viscoelastic shells. First the time-invariant hereditary theory is presented, describing the response of viscoelastic materials. According to the correspondence principle of this theory the actual viscoelastic shell may be replaced by a conjugate elastic one. In this way many of the results from the first half of the book can be put to good use even for viscoelastic shells. The time-dependent material characteristics are taken into account by means of the time-temperature principle.In an appendix (Part VI), the mathematical prerequisites are presented. With viscoelasticity comes the need to employ further mathematical disciplines; integral equations and integral transformations are usually encountered. Here, instead, a different concept has been chosen, the distributional concept of Laurent Schwartz, which allows many problems to be tackled in a simple formal way. In discussing the distribution theory, a level accessible to a technical reader has been maintained.The book is intended as a textbook for students and teachers of structural and aeronautical engineering. The book will also appeal to a broad range of practising engineers working in areas of aeronautical, civil, and mechanical engineering, as well as to those working for firms dealing with shell structures.
Publisher: Elsevier
ISBN: 1483291774
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Shell structures are key components in a very wide range of engineering enterprises. The theory of layered shells of revolution under the quasistatic action of loading and temperature is the subject of this book. The shells treated here are in general of an asymmetric sandwich structure. A linear theory is developed which allows for a transition to shells with less layers, that is two-layered and homogeneous structures.The first half of the book is concerned with orthotropic elastic shells. In particular, it includes the membrane theory of cylindrical, spherical and conical shells, and the bending theory of cylindrical shells, storage tanks and pressure-vessels. In each of the numerical examples considered, an attempt is made to map different regimes of structural behaviour.The second half of the book is devoted to viscoelastic shells. First the time-invariant hereditary theory is presented, describing the response of viscoelastic materials. According to the correspondence principle of this theory the actual viscoelastic shell may be replaced by a conjugate elastic one. In this way many of the results from the first half of the book can be put to good use even for viscoelastic shells. The time-dependent material characteristics are taken into account by means of the time-temperature principle.In an appendix (Part VI), the mathematical prerequisites are presented. With viscoelasticity comes the need to employ further mathematical disciplines; integral equations and integral transformations are usually encountered. Here, instead, a different concept has been chosen, the distributional concept of Laurent Schwartz, which allows many problems to be tackled in a simple formal way. In discussing the distribution theory, a level accessible to a technical reader has been maintained.The book is intended as a textbook for students and teachers of structural and aeronautical engineering. The book will also appeal to a broad range of practising engineers working in areas of aeronautical, civil, and mechanical engineering, as well as to those working for firms dealing with shell structures.
Stress in ASME Pressure Vessels, Boilers, and Nuclear Components
Author: Maan H. Jawad
Publisher: John Wiley & Sons
ISBN: 1119259274
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
An illustrative guide to the analysis needed to achieve a safe design in ASME Pressure Vessels, Boilers, and Nuclear Components Stress in ASME Pressure Vessels, Boilers, and Nuclear Components offers a revised and updatededition of the text, Design of Plate and Shell Structures. This important resource offers engineers and students a text that covers the complexities involved in stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards. The author covers the basic theories and includes a wealth of illustrative examples for the design of components that address the internal and external loads as well as other loads such as wind and dead loads. The text keeps the various derivations relatively simple and the resulting equations are revised to a level so that they can be applied directly to real-world design problems. The many examples clearly show the level of analysis needed to achieve a safe design based on a given required degree of accuracy. Written to be both authoritative and accessible, this important updated book: Offers an increased focus on mechanical engineering and contains more specific and practical code-related guidelines Includes problems and solutions for course and professional training use Examines the basic aspects of relevant theories and gives examples for the design of components Contains various derivations that are kept relatively simple so that they can be applied directly to design problems Written for professional mechanical engineers and students, this text offers a resource to the theories and applications that are needed to achieve an understanding of stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards.
Publisher: John Wiley & Sons
ISBN: 1119259274
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
An illustrative guide to the analysis needed to achieve a safe design in ASME Pressure Vessels, Boilers, and Nuclear Components Stress in ASME Pressure Vessels, Boilers, and Nuclear Components offers a revised and updatededition of the text, Design of Plate and Shell Structures. This important resource offers engineers and students a text that covers the complexities involved in stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards. The author covers the basic theories and includes a wealth of illustrative examples for the design of components that address the internal and external loads as well as other loads such as wind and dead loads. The text keeps the various derivations relatively simple and the resulting equations are revised to a level so that they can be applied directly to real-world design problems. The many examples clearly show the level of analysis needed to achieve a safe design based on a given required degree of accuracy. Written to be both authoritative and accessible, this important updated book: Offers an increased focus on mechanical engineering and contains more specific and practical code-related guidelines Includes problems and solutions for course and professional training use Examines the basic aspects of relevant theories and gives examples for the design of components Contains various derivations that are kept relatively simple so that they can be applied directly to design problems Written for professional mechanical engineers and students, this text offers a resource to the theories and applications that are needed to achieve an understanding of stress loads and design of plates and shell components in compliance with pressure vessel, boiler, and nuclear standards.
Design of Plate and Shell Structures
Author: Maan H. Jawad
Publisher: American Society of Mechanical Engineers
ISBN: 9780791801994
Category : Plates (Engineering)
Languages : en
Pages : 0
Book Description
This book is written primarily for professional engineers interested in designing plate and shell structures. It covers basic aspects of theories and gives examples for the design of components due to internal and external loads as well as other loads, such as wind and dead loads. Various derivations are kept relatively simple and the resultant equations are simplified to a level where the engineer can apply them directly to design problems. More elaborate derivations and more general equations can be found in the literature for those interested in a more in-depth knowledge of the theories of plates and shells. The examples given throughout this book are intended to show the engineer the level of analysis needed to achieve a safe design based on a given required degree of accuracy. This book is also appropriate for advanced engineering courses.
Publisher: American Society of Mechanical Engineers
ISBN: 9780791801994
Category : Plates (Engineering)
Languages : en
Pages : 0
Book Description
This book is written primarily for professional engineers interested in designing plate and shell structures. It covers basic aspects of theories and gives examples for the design of components due to internal and external loads as well as other loads, such as wind and dead loads. Various derivations are kept relatively simple and the resultant equations are simplified to a level where the engineer can apply them directly to design problems. More elaborate derivations and more general equations can be found in the literature for those interested in a more in-depth knowledge of the theories of plates and shells. The examples given throughout this book are intended to show the engineer the level of analysis needed to achieve a safe design based on a given required degree of accuracy. This book is also appropriate for advanced engineering courses.
Technical Abstract Bulletin
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 912
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 912
Book Description
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 628
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 628
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Shell Structures: Theory and Applications (Vol. 2)
Author: Wojciech Pietraszkiewicz
Publisher: CRC Press
ISBN: 1439859191
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Shell Structures. Theory and Applications, Volume 2 contains 77 contributions from over 17 countries, reflecting a wide spectrum of scientific and engineering problems of shell structures. The papers are divided into six broad groups: 1. General lectures; 2. Theoretical modeling; 3. Stability; 4. Dynamics; 5. Numerical analysis; 6. Engineering
Publisher: CRC Press
ISBN: 1439859191
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
Shell Structures. Theory and Applications, Volume 2 contains 77 contributions from over 17 countries, reflecting a wide spectrum of scientific and engineering problems of shell structures. The papers are divided into six broad groups: 1. General lectures; 2. Theoretical modeling; 3. Stability; 4. Dynamics; 5. Numerical analysis; 6. Engineering
Rotating Shell Dynamics
Author: Hua Li
Publisher: Elsevier
ISBN: 0080455697
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
There are numerous engineering applications for high-speed rotating structures which rotate about their symmetric axes. For example, free-flight sub-munition projectiles rotate at high speeds in order to achieve an aerodynamically-stable flight. This is the first book of its kind to provide a comprehensive and systematic description of rotating shell dynamics. It not only provides the basic derivation of the dynamic governing equations for rotating shells, but documents benchmark results for free vibration, critical speed and parametric resonance. It is written in a simple and clear manner making it accessible both the expert and graduate student. The first monograph to provide a detailed description of rotating shell dynamics Dynamic problems such as free vibration and dynamic stability are examined in detail, for basic shells of revolutions
Publisher: Elsevier
ISBN: 0080455697
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
There are numerous engineering applications for high-speed rotating structures which rotate about their symmetric axes. For example, free-flight sub-munition projectiles rotate at high speeds in order to achieve an aerodynamically-stable flight. This is the first book of its kind to provide a comprehensive and systematic description of rotating shell dynamics. It not only provides the basic derivation of the dynamic governing equations for rotating shells, but documents benchmark results for free vibration, critical speed and parametric resonance. It is written in a simple and clear manner making it accessible both the expert and graduate student. The first monograph to provide a detailed description of rotating shell dynamics Dynamic problems such as free vibration and dynamic stability are examined in detail, for basic shells of revolutions
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 916
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 916
Book Description
Mechanics of Composite Structural Elements
Author: Holm Altenbach
Publisher: Springer
ISBN: 9811089353
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.
Publisher: Springer
ISBN: 9811089353
Category : Technology & Engineering
Languages : en
Pages : 518
Book Description
This second edition of the textbook presents a systematic introduction to the structural mechanics of composite components. The book focusses on modeling and calculation of sandwiches and laminated composites i.e. anisotropic material. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. The textbook is written for use not only in engineering curricula of aerospace, civil and mechanical engineering, but also for materials science and applied mechanics. Furthermore, it addresses practicing engineers and researchers. No prior knowledge of composite materials and structures is required for the understanding of its content. The book is close to classical courses of "Strength of Materials" and "Theory of Beams, Plates and Shells" but it extends the classic content on two topics: the linear elastic material behavior of isotropic and non-isotropic structural elements, and inhomogeneous material properties in the thickness direction. The Finite Element Analysis of laminate and sandwich structures is briefly presented. Many solved examples illustrate the application of the techniques learned.