Three-Dimensional Elasticity

Three-Dimensional Elasticity PDF Author:
Publisher: Elsevier
ISBN: 0080875416
Category : Technology & Engineering
Languages : en
Pages : 495

Get Book Here

Book Description
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Three-Dimensional Elasticity

Three-Dimensional Elasticity PDF Author:
Publisher: Elsevier
ISBN: 0080875416
Category : Technology & Engineering
Languages : en
Pages : 495

Get Book Here

Book Description
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Theory of Elasticity

Theory of Elasticity PDF Author: A.I. Lurie
Publisher: Springer Science & Business Media
ISBN: 3540264558
Category : Technology & Engineering
Languages : en
Pages : 1036

Get Book Here

Book Description
The classical theory of elasticity maintains a place of honour in the science ofthe behaviour ofsolids. Its basic definitions are general for all branches of this science, whilst the methods forstating and solving these problems serve as examples of its application. The theories of plasticity, creep, viscoelas ticity, and failure of solids do not adequately encompass the significance of the methods of the theory of elasticity for substantiating approaches for the calculation of stresses in structures and machines. These approaches constitute essential contributions in the sciences of material resistance and structural mechanics. The first two chapters form Part I of this book and are devoted to the basic definitions ofcontinuum mechanics; namely stress tensors (Chapter 1) and strain tensors (Chapter 2). The necessity to distinguish between initial and actual states in the nonlinear theory does not allow one to be content with considering a single strain measure. For this reason, it is expedient to introduce more rigorous tensors to describe the stress-strain state. These are considered in Section 1.3 for which the study of Sections 2.3-2.5 should precede. The mastering of the content of these sections can be postponed until the nonlinear theory is studied in Chapters 8 and 9.

Stress Formulation in Three-Dimensional Elasticity

Stress Formulation in Three-Dimensional Elasticity PDF Author: Surya N. Patnaik
Publisher:
ISBN:
Category : Boundary element methods
Languages : en
Pages : 26

Get Book Here

Book Description
The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke Saint Venant, and others. It was deemed complete when Saint Venant provided the strain formulation in 1860. However, unlike Cauchy, who addressed equilibrium in the field and on the boundary. the strain formulation was confined only to the field. Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct stress formulation could not be developed. Stress with traditional methods must be recovered by backcalculation : differentiating either the displacement or the stress function. We have addressed the compatibility on the boundary. Augmentation of these conditions has completed the stress formulation in elasticity, opening up a way for a direct determination of stress without the intermediate step of calculating the displacement or the stress function.

Structural Analysis

Structural Analysis PDF Author: O. A. Bauchau
Publisher: Springer Science & Business Media
ISBN: 9048125162
Category : Technology & Engineering
Languages : en
Pages : 943

Get Book Here

Book Description
The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.

Stress Formulation in Three-Dimensional Elasticity

Stress Formulation in Three-Dimensional Elasticity PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721269082
Category :
Languages : en
Pages : 40

Get Book Here

Book Description
The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke Saint Venant, and others. It was deemed complete when Saint Venant provided the strain formulation in 1860. However, unlike Cauchy, who addressed equilibrium in the field and on the boundary, the strain formulation was confined only to the field. Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct stress formulation could not be developed. Stress with traditional methods must be recovered by backcalculation: differentiating either the displacement or the stress function. We have addressed the compatibility on the boundary. Augmentation of these conditions has completed the stress formulation in elasticity, opening up a way for a direct determination of stress without the intermediate step of calculating the displacement or the stress function. This Completed Beltrami-Michell Formulation (CBMF) can be specialized to derive the traditional methods, but the reverse is not possible. Elasticity solutions must be verified for the compliance of the new equation because the boundary compatibility conditions expressed in terms of displacement are not trivially satisfied. This paper presents the variational derivation of the stress formulation, illustrates the method, examines attributes and benefits, and outlines the future course of research. Patnaik, Surya N. and Hopkins, Dale A. Glenn Research Center NASA/TP-2001-210515, E-10106-1, NAS 1.60:210515

Three-Dimensional Elasticity

Three-Dimensional Elasticity PDF Author: Philippe G. Ciarlet
Publisher: Elsevier
ISBN: 9780444817761
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Advanced Topics in Finite Element Analysis of Structures

Advanced Topics in Finite Element Analysis of Structures PDF Author: M. Asghar Bhatti
Publisher: Wiley
ISBN: 9780471648079
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Starting from governing differential equations, a unique and consistently weighted residual approach is used to present advanced topics in finite element analysis of structures, such as mixed and hybrid formulations, material and geometric nonlinearities, and contact problems. This book features a hands-on approach to understanding advanced concepts of the finite element method (FEM) through integrated Mathematica and MATLABĀ® exercises.

Elasticity

Elasticity PDF Author: Martin H. Sadd
Publisher: Elsevier
ISBN: 008047747X
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of

University Physics

University Physics PDF Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818

Get Book Here

Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves

Three-dimensional Stress Distribution Near a Sharp Crack in a Plate of Finite Thickness

Three-dimensional Stress Distribution Near a Sharp Crack in a Plate of Finite Thickness PDF Author: G. H. Sih
Publisher:
ISBN:
Category : Strains and stresses
Languages : en
Pages : 52

Get Book Here

Book Description
An attempt has been made to investigate the three-dimensional stress distribution near the tip of a semi-infinite crack embedded in an infinite plate of arbitrary thickness. The problem is formulated by means of three biharmonic functions in the classical theory of elasticity as developed by Galerkin. The eigenfunction expansion technique of Williams for solving two-dimensional crack problems is incorporated into the three-dimensional crack analysis. It is found that the stresses rr, theta theta, zz, r theta are singular of the order of r( -1/2), r being the distance measured from the crack point, but the transverse shear components rz, theta z are bounded everywhere in the plate. Determined in an approximate manner is the intensity of the crack-edge stress field which depends on the thickness coordinate of the plate. The results provide an improved understanding of the three-dimensional aspects of fracture theories, particularly on the effect of plate thickness.