Stress-corrosion Cracking and Hydrogen-stress Cracking of High-strength Steel

Stress-corrosion Cracking and Hydrogen-stress Cracking of High-strength Steel PDF Author: Ellis E. Fletcher
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 28

Get Book Here

Book Description
High-strength steels are susceptible to delayed cracking under suitable conditions. Frequently such a brittle failure occurs at a stress that is only a fraction of the nominal yield strength. Considerable controversy exists over whether such failures result from two separate and distinct phenomena or whether there is but one mechanism called by two different names. Stress-corrosion cracking is the process in which a crack propagates, at least partially, by the stress induced corrosion of a susceptible metal at the advancing tip of the stress-corrosion crack. There is considerable evidence that this cracking results from the electrtrochemical corrosion of a metal subjected to tensile stresses, either residual or externally applied. Hydrogen-stress cracking is cracking which occurs as the result of hydrogen in the metal lattice in combination with tensile stresses. Hydrogen-stress cracking cannot occur if hydrogen is prevented from entering the steel, or if hydrogen that has entered during processing or service is removed before permanent damage has occurred. It is generally agreed that corrosion plays no part in the actual fracture mechanism. This report was prepared to point out wherein the two fracture mechanisms under consideration are similar and wherein they differ. From the evidence available today, the present authors have concluded that there are two distinct mechansims of delayed failure. (Author).

Stress-corrosion Cracking and Hydrogen-stress Cracking of High-strength Steel

Stress-corrosion Cracking and Hydrogen-stress Cracking of High-strength Steel PDF Author: Ellis E. Fletcher
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 28

Get Book Here

Book Description
High-strength steels are susceptible to delayed cracking under suitable conditions. Frequently such a brittle failure occurs at a stress that is only a fraction of the nominal yield strength. Considerable controversy exists over whether such failures result from two separate and distinct phenomena or whether there is but one mechanism called by two different names. Stress-corrosion cracking is the process in which a crack propagates, at least partially, by the stress induced corrosion of a susceptible metal at the advancing tip of the stress-corrosion crack. There is considerable evidence that this cracking results from the electrtrochemical corrosion of a metal subjected to tensile stresses, either residual or externally applied. Hydrogen-stress cracking is cracking which occurs as the result of hydrogen in the metal lattice in combination with tensile stresses. Hydrogen-stress cracking cannot occur if hydrogen is prevented from entering the steel, or if hydrogen that has entered during processing or service is removed before permanent damage has occurred. It is generally agreed that corrosion plays no part in the actual fracture mechanism. This report was prepared to point out wherein the two fracture mechanisms under consideration are similar and wherein they differ. From the evidence available today, the present authors have concluded that there are two distinct mechansims of delayed failure. (Author).

Stress Corrosion Cracking

Stress Corrosion Cracking PDF Author: V S Raja
Publisher: Elsevier
ISBN: 0857093762
Category : Technology & Engineering
Languages : en
Pages : 817

Get Book Here

Book Description
The problem of stress corrosion cracking (SCC), which causes sudden failure of metals and other materials subjected to stress in corrosive environment(s), has a significant impact on a number of sectors including the oil and gas industries and nuclear power production. Stress corrosion cracking reviews the fundamentals of the phenomenon as well as examining stress corrosion behaviour in specific materials and particular industries.The book is divided into four parts. Part one covers the mechanisms of SCC and hydrogen embrittlement, while the focus of part two is on methods of testing for SCC in metals. Chapters in part three each review the phenomenon with reference to a specific material, with a variety of metals, alloys and composites discussed, including steels, titanium alloys and polymer composites. In part four, the effect of SCC in various industries is examined, with chapters covering subjects such as aerospace engineering, nuclear reactors, utilities and pipelines.With its distinguished editors and international team of contributors, Stress corrosion cracking is an essential reference for engineers and designers working with metals, alloys and polymers, and will be an invaluable tool for any industries in which metallic components are exposed to tension, corrosive environments at ambient and high temperatures. - Examines the mechanisms of stress corrosion cracking (SCC) presenting recognising testing methods and materials resistant to SCC - Assesses the effect of SCC on particular metals featuring steel, stainless steel, nickel-based alloys, magnesium alloys, copper-based alloys and welds in steels - Reviews the monitoring and management of SCC and the affect of SCC in different industries such as petrochemical and aerospace

Welding High-strength Steels

Welding High-strength Steels PDF Author: P. A. Kammer
Publisher:
ISBN:
Category : Martensitic stainless steel
Languages : en
Pages : 68

Get Book Here

Book Description
Recent studies of the developments in welding steels with yield strengths greater than 150 ksi have included low-alloy martensitic steels, medium-alloy martensitic steels, nickel maraging steels, and bainitic steels. Only weldments from medium-alloy martensitic steels and nickel maraging steels have mechanical properties approaching those of the base plate without a complete postweld heat treatment. The most serious problem with the other steel is low toughness in the weld fusion zone. Adequate weld metal toughness under conditions of elastic strain can be obtarined over the entire 150 to 225 ksi yield-strength range only if the tungsten-arc welding process is used. Processes with higher deposition rates can produce comparable weld deposits only in the lower portion of the range. Above a yield strength of 200 ksi, 18Ni maraging steel weldments have the best combination of strength and toughness. Below 200 ksi, the HP 9-4-25 medium-alloy martensitic steel and 12Ni maraging steel weldments have nearly equal properties.

Stress Corrosion Cracking of Pipelines

Stress Corrosion Cracking of Pipelines PDF Author: Y. Frank Cheng
Publisher: John Wiley & Sons
ISBN: 1118537084
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
Explains why pipeline stress corrosion cracking happens and how it can be prevented Pipelines sit at the heart of the global economy. When they are in good working order, they deliver fuel to meet the ever-growing demand for energy around the world. When they fail due to stress corrosion cracking, they can wreak environmental havoc. This book skillfully explains the fundamental science and engineering of pipeline stress corrosion cracking based on the latest research findings and actual case histories. The author explains how and why pipelines fall prey to stress corrosion cracking and then offers tested and proven strategies for preventing, detecting, and monitoring it in order to prevent pipeline failure. Stress Corrosion Cracking of Pipelines begins with a brief introduction and then explores general principals of stress corrosion cracking, including two detailed case studies of pipeline failure. Next, the author covers: Near-neutral pH stress corrosion cracking of pipelines High pH stress corrosion cracking of pipelines Stress corrosion cracking of pipelines in acidic soil environments Stress corrosion cracking at pipeline welds Stress corrosion cracking of high-strength pipeline steels The final chapter is dedicated to effective management and mitigation of pipeline stress corrosion cracking. Throughout the book, the author develops a number of theoretical models and concepts based on advanced microscopic electrochemical measurements to help readers better understand the occurrence of stress corrosion cracking. By examining all aspects of pipeline stress corrosion cracking—the causes, mechanisms, and management strategies—this book enables engineers to construct better pipelines and then maintain and monitor them to ensure safe, reliable energy supplies for the world.

Stress Corrosion Cracking of Metals-A State of the Art

Stress Corrosion Cracking of Metals-A State of the Art PDF Author: H. Lee Craig
Publisher: ASTM International
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description


Stress-corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys

Stress-corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys PDF Author: Benjamin Floyd Brown
Publisher:
ISBN:
Category : Aluminum alloys
Languages : en
Pages : 390

Get Book Here

Book Description


Advanced High-Strength Steels

Advanced High-Strength Steels PDF Author: Mahmoud Y. Demeri
Publisher: ASM International
ISBN: 1627080058
Category : Business & Economics
Languages : en
Pages : 312

Get Book Here

Book Description
Examines the types, microstructures and attributes of AHSSAlso reviews the current and future applications, the benefits, trends and environmental and sustainability issues.

Fracture Toughness Testing and Its Applications

Fracture Toughness Testing and Its Applications PDF Author: ASTM Committee E-24 Staff
Publisher: ASTM International
ISBN: 9780803101050
Category : Technology & Engineering
Languages : en
Pages : 430

Get Book Here

Book Description


Hydrogen Embrittlement and Stress Corrosion Cracking

Hydrogen Embrittlement and Stress Corrosion Cracking PDF Author: Alexander Robert Troiano
Publisher: ASM International
ISBN: 9781615031788
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description


Hydrogen Embrittlement

Hydrogen Embrittlement PDF Author: Louis Raymond
Publisher: ASTM International
ISBN: 0803109598
Category : Metals
Languages : en
Pages : 429

Get Book Here

Book Description