Author: David K. Felbeck
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Strength and Fracture of Engineering Solids
Author: David K. Felbeck
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Publisher: Pearson Education
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
The second- or third-year engineering student who has completed a materials science course now requires a firm grounding on the principles and applications of the origins of mechanical properties of engineering materials. This book provides essential knowledge of mechanical properties, in a systematic sequence from the simple to the complex, so that the student can apply this knowledge to the design and manufacturing courses that follow.
Physics of Strength and Fracture Control
Author: Anatoly A. Komarovsky
Publisher: CRC Press
ISBN: 1420040723
Category : Science
Languages : en
Pages : 671
Book Description
Still passive and for the most part uncontrollable, current systems intended to ensure the reliability and durability of engineering structures are still in their developmental infancy. They cannot make corrections or recondition materials, and most material and structural failures cannot be predicted. Accidents-and catastrophes-result. Phys
Publisher: CRC Press
ISBN: 1420040723
Category : Science
Languages : en
Pages : 671
Book Description
Still passive and for the most part uncontrollable, current systems intended to ensure the reliability and durability of engineering structures are still in their developmental infancy. They cannot make corrections or recondition materials, and most material and structural failures cannot be predicted. Accidents-and catastrophes-result. Phys
Fracture of Brittle Solids
Author: Brian R. Lawn
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Publisher: Cambridge University Press
ISBN: 9780521409728
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book is a monograph on the brittle fracture of ceramic materials, in a unified continuum, microstructural and atomistic treatment.
Engineering Solid Mechanics
Author: Abdel-Rahman A. Ragab
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 944
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Publisher: CRC Press
ISBN: 1351450921
Category : Science
Languages : en
Pages : 944
Book Description
Engineering Solid Mechanics bridges the gap between elementary approaches to strength of materials and more advanced, specialized versions on the subject. The book provides a basic understanding of the fundamentals of elasticity and plasticity, applies these fundamentals to solve analytically a spectrum of engineering problems, and introduces advanced topics of mechanics of materials - including fracture mechanics, creep, superplasticity, fiber reinforced composites, powder compacts, and porous solids. Text includes: stress and strain, equilibrium, and compatibility elastic stress-strain relations the elastic problem and the stress function approach to solving plane elastic problems applications of the stress function solution in Cartesian and polar coordinates Problems of elastic rods, plates, and shells through formulating a strain compatibility function as well as applying energy methods Elastic and elastic-plastic fracture mechanics Plastic and creep deformation Inelastic deformation and its applications This book presents the material in an instructive manner, suitable for individual self-study. It emphasizes analytical treatment of the subject, which is essential for handling modern numerical methods as well as assessing and creating software packages. The authors provide generous explanations, systematic derivations, and detailed discussions, supplemented by a vast variety of problems and solved examples. Primarily written for professionals and students in mechanical engineering, Engineering Solid Mechanics also serves persons in other fields of engineering, such as aerospace, civil, and material engineering.
Fracture Mechanics
Author: Chin-Teh Sun
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Deformation and Fracture Mechanics of Engineering Materials
Author: Richard W. Hertzberg
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 714
Book Description
This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.
History of Strength of Materials
Author: Stephen Timoshenko
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Mechanical Behavior and Fracture of Engineering Materials
Author: Jorge Luis González-Velázquez
Publisher: Springer Nature
ISBN: 303029241X
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.
Publisher: Springer Nature
ISBN: 303029241X
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.
Solid Mechanics
Author: William F. Hosford
Publisher: Cambridge University Press
ISBN: 1139484184
Category : Science
Languages : en
Pages : 273
Book Description
This book provides a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility, viscoelasticity, creep, ceramics, and polymers has been simplified.
Publisher: Cambridge University Press
ISBN: 1139484184
Category : Science
Languages : en
Pages : 273
Book Description
This book provides a background in the mechanics of solids for students of mechanical engineering, while limiting the information on why materials behave as they do. It is assumed that the students have already had courses covering materials science and basic statics. Much of the material is drawn from another book by the author, Mechanical Behavior of Materials. To make the text suitable for mechanical engineers, the chapters on slip, dislocations, twinning, residual stresses, and hardening mechanisms have been eliminated and the treatment of ductility, viscoelasticity, creep, ceramics, and polymers has been simplified.