Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology PDF Author: David Holcman
Publisher: Springer
ISBN: 3319626272
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology PDF Author: David Holcman
Publisher: Springer
ISBN: 3319626272
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.

Stochastic Processes in Cell Biology

Stochastic Processes in Cell Biology PDF Author: Paul C. Bressloff
Publisher: Springer Nature
ISBN: 3030725154
Category : Mathematics
Languages : en
Pages : 773

Get Book Here

Book Description
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

Analytic Methods for Coagulation-Fragmentation Models, Volume II

Analytic Methods for Coagulation-Fragmentation Models, Volume II PDF Author: Jacek Banasiak
Publisher: CRC Press
ISBN: 1000001318
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Analytic Methods for Coagulation-Fragmentation Models is a two-volume set that provides a comprehensive exposition of the mathematical analysis of coagulation-fragmentation models. Initially, an in-depth survey of coagulation-fragmentation processes is presented, together with an account of relevant early results obtained on the associated model equations. These provide motivation for the subsequent detailed treatment of more up-to-date investigations which have led to significant theoretical developments on topics such as solvability and the long-term behaviour of solutions. To make the account as self-contained as possible, the mathematical tools that feature prominently in these modern treatments are introduced at appropriate places. The main theme of Volume I is the analysis of linear fragmentation models, with Volume II devoted to processes that involve the nonlinear contribution of coagulation. Features of Volume II: A primer on weak compactness in L 1 and dynamical systems A comprehensive theory of solvability of the coagulation-fragmentation equation by both the semigroup and weak compactness methods, including a thorough analysis of the gelation and shattering phenomena A detailed analysis of the long-term dynamics of the coagulation-fragmentation equations with a state-of-the-art discussion on self-similar solutions

From Data to Models and Back

From Data to Models and Back PDF Author: Juliana Bowles
Publisher: Springer Nature
ISBN: 3031160118
Category : Computers
Languages : en
Pages : 199

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 10th International Symposium "From Data Models and Back", DataMod 2021, which was held virtually during December 6-7, 2021, as a satellite event of SEFM 2021. The 9 full papers and 1 short paper included in this book were carefully reviewed and selected from 12 submissions. They were organized in topical sections as follows: Model verification; data mining and processing related approaches; and other approaches.

Research in Multidisciplinary Subjects (Volume- 5)

Research in Multidisciplinary Subjects (Volume- 5) PDF Author: Chief Editor- Biplab Auddya, Editor- Dr. Darshanam Vijaykumar, Advitya Khurana, Dr. S.Amutha, Dr. Kavita Jaidiya, Dr. Jayesh Manjrekar, Dr. L Malleswara Rao, Mr. Sugeet Sethi
Publisher: The Hill Publication
ISBN: 8196477635
Category : Antiques & Collectibles
Languages : en
Pages : 153

Get Book Here

Book Description


Network Bioscience, 2nd Edition

Network Bioscience, 2nd Edition PDF Author: Marco Pellegrini
Publisher: Frontiers Media SA
ISBN: 288963650X
Category :
Languages : en
Pages : 270

Get Book Here

Book Description
Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.

Mitochondrial Genetics and Epigenetics

Mitochondrial Genetics and Epigenetics PDF Author: Caterina Garone
Publisher: Frontiers Media SA
ISBN: 2889662322
Category : Science
Languages : en
Pages : 167

Get Book Here

Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Multiscale Cancer Modeling

Multiscale Cancer Modeling PDF Author: Thomas S. Deisboeck
Publisher: CRC Press
ISBN: 1439814422
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Asymptotics of Elliptic and Parabolic PDEs

Asymptotics of Elliptic and Parabolic PDEs PDF Author: David Holcman
Publisher: Springer
ISBN: 3319768956
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world problems from first principles.

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes PDF Author: Miguel Cerrolaza
Publisher: Academic Press
ISBN: 0128117192
Category : Technology & Engineering
Languages : en
Pages : 462

Get Book Here

Book Description
Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems