Author: Y. Dodge
Publisher: Elsevier
ISBN: 1483296113
Category : Mathematics
Languages : en
Pages : 630
Book Description
A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.
Statistical Data Analysis and Inference
Author: Y. Dodge
Publisher: Elsevier
ISBN: 1483296113
Category : Mathematics
Languages : en
Pages : 630
Book Description
A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.
Publisher: Elsevier
ISBN: 1483296113
Category : Mathematics
Languages : en
Pages : 630
Book Description
A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.
Introduction to Statistics and Data Analysis
Author: Christian Heumann
Publisher: Springer Nature
ISBN: 3031118332
Category : Mathematics
Languages : en
Pages : 584
Book Description
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Publisher: Springer Nature
ISBN: 3031118332
Category : Mathematics
Languages : en
Pages : 584
Book Description
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Statistical Foundations, Reasoning and Inference
Author: Göran Kauermann
Publisher: Springer Nature
ISBN: 3030698270
Category : Mathematics
Languages : en
Pages : 361
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Publisher: Springer Nature
ISBN: 3030698270
Category : Mathematics
Languages : en
Pages : 361
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Statistical Inference
Author: George Casella
Publisher: CRC Press
ISBN: 1040024025
Category : Mathematics
Languages : en
Pages : 1746
Book Description
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Publisher: CRC Press
ISBN: 1040024025
Category : Mathematics
Languages : en
Pages : 1746
Book Description
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
All of Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Modern Statistics with R
Author: Måns Thulin
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Chance Encounters
Author: C. J. Wild
Publisher: Wiley
ISBN: 9780471329367
Category : Mathematics
Languages : de
Pages : 0
Book Description
A text for the non-majors introductory statistics service course. The chapters--including Web site material--can be organized for one or two semester sequences; algrebra is the mathematics prerequisite. Web site chapters on quality control, time series, plus business applications regularly throughout the work make it suitable for business statistics courses on some campuses. The text combines lucid and statistically engaging exposition, graphic and poignantly applied examples, realistic exercise settings to take student past the mechanics of introductory-level statistical techniques into the realm of practical data analysis and inference-based problem solving.
Publisher: Wiley
ISBN: 9780471329367
Category : Mathematics
Languages : de
Pages : 0
Book Description
A text for the non-majors introductory statistics service course. The chapters--including Web site material--can be organized for one or two semester sequences; algrebra is the mathematics prerequisite. Web site chapters on quality control, time series, plus business applications regularly throughout the work make it suitable for business statistics courses on some campuses. The text combines lucid and statistically engaging exposition, graphic and poignantly applied examples, realistic exercise settings to take student past the mechanics of introductory-level statistical techniques into the realm of practical data analysis and inference-based problem solving.
Exact Statistical Methods for Data Analysis
Author: Samaradasa Weerahandi
Publisher: Springer Science & Business Media
ISBN: 1461208254
Category : Mathematics
Languages : en
Pages : 343
Book Description
Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Publisher: Springer Science & Business Media
ISBN: 1461208254
Category : Mathematics
Languages : en
Pages : 343
Book Description
Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.
Predictive Statistics
Author: Bertrand S. Clarke
Publisher: Cambridge University Press
ISBN: 1107028280
Category : Business & Economics
Languages : en
Pages : 657
Book Description
A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.
Publisher: Cambridge University Press
ISBN: 1107028280
Category : Business & Economics
Languages : en
Pages : 657
Book Description
A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.