Stability of Finite and Infinite Dimensional Systems

Stability of Finite and Infinite Dimensional Systems PDF Author: Michael I. Gil'
Publisher: Springer Science & Business Media
ISBN: 9780792382218
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.

Stability of Finite and Infinite Dimensional Systems

Stability of Finite and Infinite Dimensional Systems PDF Author: Michael I. Gil'
Publisher: Springer Science & Business Media
ISBN: 9780792382218
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces PDF Author: Birgit Jacob
Publisher: Springer Science & Business Media
ISBN: 3034803990
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.

Stability of Finite and Infinite Dimensional Systems

Stability of Finite and Infinite Dimensional Systems PDF Author: Michael I. Gil'
Publisher: Springer Science & Business Media
ISBN: 1461555752
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.

An Introduction to Infinite-Dimensional Linear Systems Theory

An Introduction to Infinite-Dimensional Linear Systems Theory PDF Author: Ruth F. Curtain
Publisher: Springer Science & Business Media
ISBN: 146124224X
Category : Mathematics
Languages : en
Pages : 714

Get Book Here

Book Description
Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors' primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.

Stability of Dynamical Systems

Stability of Dynamical Systems PDF Author:
Publisher: Springer Science & Business Media
ISBN: 0817644865
Category : Differentiable dynamical systems
Languages : en
Pages : 516

Get Book Here

Book Description
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.

Dynamics in Infinite Dimensions

Dynamics in Infinite Dimensions PDF Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 0387228969
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications

Infinite-Dimensional Systems

Infinite-Dimensional Systems PDF Author: F. Kappel
Publisher: Springer
ISBN: 3540389326
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description


Infinite-Dimensional Dynamical Systems

Infinite-Dimensional Dynamical Systems PDF Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 9780521632041
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.

Infinite Dimensional Optimization and Control Theory

Infinite Dimensional Optimization and Control Theory PDF Author: Hector O. Fattorini
Publisher: Cambridge University Press
ISBN: 9780521451253
Category : Computers
Languages : en
Pages : 828

Get Book Here

Book Description
Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.

Generalized Homogeneity in Systems and Control

Generalized Homogeneity in Systems and Control PDF Author: Andrey Polyakov
Publisher: Springer Nature
ISBN: 3030384497
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book Here

Book Description
This monograph introduces the theory of generalized homogeneous systems governed by differential equations in both Euclidean (finite-dimensional) and Banach/Hilbert (infinite-dimensional) spaces. It develops methods of stability and robustness analysis, control design, state estimation and discretization of homogeneous control systems. Generalized Homogeneity in Systems and Control is structured in two parts. Part I discusses various models of control systems and related tools for their analysis, including Lyapunov functions. Part II deals with the analysis and design of homogeneous control systems. Some of the key features of the text include: mathematical models of dynamical systems in finite-dimensional and infinite-dimensional spaces; the theory of linear dilations in Banach spaces; homogeneous control and estimation; simple methods for an "upgrade" of existing linear control laws; numerical schemes for a consistent digital implementation of homogeneous algorithms; and experiments confirming an improvement of PID controllers. The advanced mathematical material will be of interest to researchers, mathematicians working in control theory and mathematically oriented control engineers.