Author: Gregory R. Andrews
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 372
Book Description
SR (Synchronizing Resources) is a powerful and flexible language for concurrent programming. With its explicit mechanisms and concurrency, communication, and synchronization, programmers can easily learn to write programs for both shared- and distributed-memory applications and machines.This book, written by the language designers, provides a complete introduction to SR and gives the reader the tools for learning about and experimenting with concurrency. Features Provides an accessible, clear introduction to SR by the language designers. Teaches practical techniques through numerous realistic examples of parallel and distributed programming problems. Examines 'classic' concurrent programming problems as well as many important parallel and distributed programming problems. Illustrates trade-offs between language mechanisms to help the reader understand and make optimum design decisions Reinforces key points with numerous end-of-chapter exercises Includes six appendices that summarize the language for quick reference, show how to develop and execute programs, and describe the implementation. The SR language implementation is available, free, from the SR Project, University of Arizona, at ftp://cs.arizona.edu/sr/. 0805300880B04062001
The SR Programming Language
Author: Gregory R. Andrews
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 372
Book Description
SR (Synchronizing Resources) is a powerful and flexible language for concurrent programming. With its explicit mechanisms and concurrency, communication, and synchronization, programmers can easily learn to write programs for both shared- and distributed-memory applications and machines.This book, written by the language designers, provides a complete introduction to SR and gives the reader the tools for learning about and experimenting with concurrency. Features Provides an accessible, clear introduction to SR by the language designers. Teaches practical techniques through numerous realistic examples of parallel and distributed programming problems. Examines 'classic' concurrent programming problems as well as many important parallel and distributed programming problems. Illustrates trade-offs between language mechanisms to help the reader understand and make optimum design decisions Reinforces key points with numerous end-of-chapter exercises Includes six appendices that summarize the language for quick reference, show how to develop and execute programs, and describe the implementation. The SR language implementation is available, free, from the SR Project, University of Arizona, at ftp://cs.arizona.edu/sr/. 0805300880B04062001
Publisher: Addison Wesley
ISBN:
Category : Computers
Languages : en
Pages : 372
Book Description
SR (Synchronizing Resources) is a powerful and flexible language for concurrent programming. With its explicit mechanisms and concurrency, communication, and synchronization, programmers can easily learn to write programs for both shared- and distributed-memory applications and machines.This book, written by the language designers, provides a complete introduction to SR and gives the reader the tools for learning about and experimenting with concurrency. Features Provides an accessible, clear introduction to SR by the language designers. Teaches practical techniques through numerous realistic examples of parallel and distributed programming problems. Examines 'classic' concurrent programming problems as well as many important parallel and distributed programming problems. Illustrates trade-offs between language mechanisms to help the reader understand and make optimum design decisions Reinforces key points with numerous end-of-chapter exercises Includes six appendices that summarize the language for quick reference, show how to develop and execute programs, and describe the implementation. The SR language implementation is available, free, from the SR Project, University of Arizona, at ftp://cs.arizona.edu/sr/. 0805300880B04062001
Programming Distributed Systems
Author: H. E. Bal
Publisher: Silicon Press
ISBN: 9780929306056
Category : Computers
Languages : en
Pages : 308
Book Description
Publisher: Silicon Press
ISBN: 9780929306056
Category : Computers
Languages : en
Pages : 308
Book Description
Foundations of Multithreaded, Parallel, and Distributed Programming
Author: Gregory R. Andrews
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001
Introduction to Reliable and Secure Distributed Programming
Author: Christian Cachin
Publisher: Springer Science & Business Media
ISBN: 3642152600
Category : Computers
Languages : en
Pages : 381
Book Description
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
Publisher: Springer Science & Business Media
ISBN: 3642152600
Category : Computers
Languages : en
Pages : 381
Book Description
In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".
Guide to Reliable Distributed Systems
Author: Amy Elser
Publisher: Springer Science & Business Media
ISBN: 1447124154
Category : Computers
Languages : en
Pages : 733
Book Description
This book describes the key concepts, principles and implementation options for creating high-assurance cloud computing solutions. The guide starts with a broad technical overview and basic introduction to cloud computing, looking at the overall architecture of the cloud, client systems, the modern Internet and cloud computing data centers. It then delves into the core challenges of showing how reliability and fault-tolerance can be abstracted, how the resulting questions can be solved, and how the solutions can be leveraged to create a wide range of practical cloud applications. The author’s style is practical, and the guide should be readily understandable without any special background. Concrete examples are often drawn from real-world settings to illustrate key insights. Appendices show how the most important reliability models can be formalized, describe the API of the Isis2 platform, and offer more than 80 problems at varying levels of difficulty.
Publisher: Springer Science & Business Media
ISBN: 1447124154
Category : Computers
Languages : en
Pages : 733
Book Description
This book describes the key concepts, principles and implementation options for creating high-assurance cloud computing solutions. The guide starts with a broad technical overview and basic introduction to cloud computing, looking at the overall architecture of the cloud, client systems, the modern Internet and cloud computing data centers. It then delves into the core challenges of showing how reliability and fault-tolerance can be abstracted, how the resulting questions can be solved, and how the solutions can be leveraged to create a wide range of practical cloud applications. The author’s style is practical, and the guide should be readily understandable without any special background. Concrete examples are often drawn from real-world settings to illustrate key insights. Appendices show how the most important reliability models can be formalized, describe the API of the Isis2 platform, and offer more than 80 problems at varying levels of difficulty.
Foundations of Dependable Computing
Author: Gary M. Koob
Publisher: Springer Science & Business Media
ISBN: 0585273162
Category : Computers
Languages : en
Pages : 224
Book Description
Foundations of Dependable Computing: Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. The companion volume subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.
Publisher: Springer Science & Business Media
ISBN: 0585273162
Category : Computers
Languages : en
Pages : 224
Book Description
Foundations of Dependable Computing: Paradigms for Dependable Applications, presents a variety of specific approaches to achieving dependability at the application level. Driven by the higher level fault models of Models and Frameworks for Dependable Systems, and built on the lower level abstractions implemented in a third companion book subtitled System Implementation, these approaches demonstrate how dependability may be tuned to the requirements of an application, the fault environment, and the characteristics of the target platform. Three classes of paradigms are considered: protocol-based paradigms for distributed applications, algorithm-based paradigms for parallel applications, and approaches to exploiting application semantics in embedded real-time control systems. The companion volume subtitled Models and Frameworks for Dependable Systems presents two comprehensive frameworks for reasoning about system dependability, thereby establishing a context for understanding the roles played by specific approaches presented in this book's two companion volumes. It then explores the range of models and analysis methods necessary to design, validate and analyze dependable systems. Another companion book (published by Kluwer) subtitled System Implementation, explores the system infrastructure needed to support the various paradigms of Paradigms for Dependable Applications. Approaches to implementing support mechanisms and to incorporating additional appropriate levels of fault detection and fault tolerance at the processor, network, and operating system level are presented. A primary concern at these levels is balancing cost and performance against coverage and overall dependability. As these chapters demonstrate, low overhead, practical solutions are attainable and not necessarily incompatible with performance considerations. The section on innovative compiler support, in particular, demonstrates how the benefits of application specificity may be obtained while reducing hardware cost and run-time overhead.
Parallel and Distributed Programming Using C++
Author: Cameron Hughes
Publisher: Addison-Wesley Professional
ISBN: 9780131013766
Category : Computers
Languages : en
Pages : 736
Book Description
This text takes complicated and almost unapproachable parallel programming techniques and presents them in a simple, understandable manner. It covers the fundamentals of programming for distributed environments like Internets and Intranets as well as the topic of Web Based Agents.
Publisher: Addison-Wesley Professional
ISBN: 9780131013766
Category : Computers
Languages : en
Pages : 736
Book Description
This text takes complicated and almost unapproachable parallel programming techniques and presents them in a simple, understandable manner. It covers the fundamentals of programming for distributed environments like Internets and Intranets as well as the topic of Web Based Agents.
Distributed Programming with Java
Author: Qusay H. Mahmoud
Publisher: Manning Publications
ISBN: 9781884777653
Category : Computers
Languages : en
Pages : 0
Book Description
For programmers already familiar with Java, this book offers new techniques on how to develop distributed applications. Although it discusses four paradigms--low-level Sockets, Remote Method Invocation, CORBA, and Mobile Agents--this book does not favor any one of these technologies. It also allows the reader to judge the easiest approach for a particular domain of applications.
Publisher: Manning Publications
ISBN: 9781884777653
Category : Computers
Languages : en
Pages : 0
Book Description
For programmers already familiar with Java, this book offers new techniques on how to develop distributed applications. Although it discusses four paradigms--low-level Sockets, Remote Method Invocation, CORBA, and Mobile Agents--this book does not favor any one of these technologies. It also allows the reader to judge the easiest approach for a particular domain of applications.
Abstract Machine Models for Parallel and Distributed Computing
Author: M. Kara
Publisher: IOS Press
ISBN: 9789051992670
Category : Computers
Languages : en
Pages : 236
Book Description
Abstract Machine Models have played a profound though frequently unacknowledged role in the development of modern computing systems. They provide a precise definition of vital concepts, allow system complexity to be managed by providing appropriate views of the activity under consideration, enable reasoning about the correctness and quantitative performance of proposed problem solutions, and encourage communication through a common medium of expression. Abstract Models in Parallel and Distributed computing have a particularly important role in the development of contemporary systems, encapsulating and controlling an inherently high degree of complexity. The Parallel and Distributed computing communities have traditionally considered themselves to be separate. However, there is a significant contemporary interest in both of these communities in a common hardware model; a set of workstation-class machines connected by a high-performance network. The traditional Parallel/Distributed distinction therefore appears under threat.
Publisher: IOS Press
ISBN: 9789051992670
Category : Computers
Languages : en
Pages : 236
Book Description
Abstract Machine Models have played a profound though frequently unacknowledged role in the development of modern computing systems. They provide a precise definition of vital concepts, allow system complexity to be managed by providing appropriate views of the activity under consideration, enable reasoning about the correctness and quantitative performance of proposed problem solutions, and encourage communication through a common medium of expression. Abstract Models in Parallel and Distributed computing have a particularly important role in the development of contemporary systems, encapsulating and controlling an inherently high degree of complexity. The Parallel and Distributed computing communities have traditionally considered themselves to be separate. However, there is a significant contemporary interest in both of these communities in a common hardware model; a set of workstation-class machines connected by a high-performance network. The traditional Parallel/Distributed distinction therefore appears under threat.
The JR Programming Language
Author: Ronald A. Olsson
Publisher: Springer Science & Business Media
ISBN: 1402080867
Category : Computers
Languages : en
Pages : 373
Book Description
JR is an extension of the Java programming language with additional concurrency mechanisms based on those in the SR (Synchronizing Resources) programming language. The JR implementation executes on UNIX-based systems (Linux, Mac OS X, and Solaris) and Windows-based systems. It is available free from the JR webpage. This book describes the JR programming language and illustrates how it can be used to write concurrent programs for a variety of applications. This text presents numerous small and large example programs. The source code for all programming examples and the given parts of all programming exercises are available on the JR webpage. Dr. Ronald A. Olsson and Dr. Aaron W. Keen, the authors of this text, are the designers and implementors of JR.
Publisher: Springer Science & Business Media
ISBN: 1402080867
Category : Computers
Languages : en
Pages : 373
Book Description
JR is an extension of the Java programming language with additional concurrency mechanisms based on those in the SR (Synchronizing Resources) programming language. The JR implementation executes on UNIX-based systems (Linux, Mac OS X, and Solaris) and Windows-based systems. It is available free from the JR webpage. This book describes the JR programming language and illustrates how it can be used to write concurrent programs for a variety of applications. This text presents numerous small and large example programs. The source code for all programming examples and the given parts of all programming exercises are available on the JR webpage. Dr. Ronald A. Olsson and Dr. Aaron W. Keen, the authors of this text, are the designers and implementors of JR.