Spin Crossover in Transition Metal Compounds II

Spin Crossover in Transition Metal Compounds II PDF Author: Philipp Gütlich
Publisher: Springer Science & Business Media
ISBN: 9783540403968
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
Table of contents C.N.R. Rao, M.M. Seikh, C. Narayana: Spin-State Transition in LaCoO3 and Related Materials .- H.A. Goodwin: Spin Crossover in Cobalt(II) Systems .- Y. Garcia, P.G tlich: Thermal Spin Crossover in Mn(II), Mn(III) Cr(II) and Co(III) Coordination Compounds .- D.N. Hendrickson, C.G. Pierpont: Valence Tautomeric Transition Metal Complexes .- P. Guionneau, M. Marchivie, G.Bravic, J.-F. Letard, D. Chasseau: Structural Aspects of Spin Crossover. Example of the [Fe(II)Ln(NCS)2] Complexes .- J. Kusz, P. G tlich, H. Spiering: Structural Investigations of Tetrazole Complexes of Iron(II) .- A. Hauser: Light-Induced Spin Crossover and the High-Spin Low-Spin Relaxation .- F. Varret, K. Boukheddaden, E. Codjovi, C. Enachescu, J. Linar s: On the Competition Between Relaxation and Photoexcitations in Spin Crossover Solids under Continuous Irradiation .- P. G tlich: Nuclear Decay Induced Excited Spin State Trapping (NIESST) .- M.-L. Boillot, J. Zarembowitch, A. Sour: Ligand-Driven Light-Induced Spin Change (LD-LISC): A Promising Photomagnetic Effect

Spin Crossover in Transition Metal Compounds II

Spin Crossover in Transition Metal Compounds II PDF Author: Philipp Gütlich
Publisher: Springer Science & Business Media
ISBN: 9783540403968
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
Table of contents C.N.R. Rao, M.M. Seikh, C. Narayana: Spin-State Transition in LaCoO3 and Related Materials .- H.A. Goodwin: Spin Crossover in Cobalt(II) Systems .- Y. Garcia, P.G tlich: Thermal Spin Crossover in Mn(II), Mn(III) Cr(II) and Co(III) Coordination Compounds .- D.N. Hendrickson, C.G. Pierpont: Valence Tautomeric Transition Metal Complexes .- P. Guionneau, M. Marchivie, G.Bravic, J.-F. Letard, D. Chasseau: Structural Aspects of Spin Crossover. Example of the [Fe(II)Ln(NCS)2] Complexes .- J. Kusz, P. G tlich, H. Spiering: Structural Investigations of Tetrazole Complexes of Iron(II) .- A. Hauser: Light-Induced Spin Crossover and the High-Spin Low-Spin Relaxation .- F. Varret, K. Boukheddaden, E. Codjovi, C. Enachescu, J. Linar s: On the Competition Between Relaxation and Photoexcitations in Spin Crossover Solids under Continuous Irradiation .- P. G tlich: Nuclear Decay Induced Excited Spin State Trapping (NIESST) .- M.-L. Boillot, J. Zarembowitch, A. Sour: Ligand-Driven Light-Induced Spin Change (LD-LISC): A Promising Photomagnetic Effect

Spin Crossover in Transition Metal Compounds I

Spin Crossover in Transition Metal Compounds I PDF Author: Philipp Gütlich
Publisher: Springer Science & Business Media
ISBN: 9783540403944
Category : Science
Languages : en
Pages : 640

Get Book Here

Book Description
With contributions by numerous experts

Spin Crossover in Transition Metal Compounds II

Spin Crossover in Transition Metal Compounds II PDF Author: Philipp Gütlich
Publisher: Springer
ISBN: 9783642073281
Category : Science
Languages : en
Pages : 295

Get Book Here

Book Description


Spin-Crossover Materials

Spin-Crossover Materials PDF Author: Malcolm A. Halcrow
Publisher: John Wiley & Sons
ISBN: 1118519310
Category : Science
Languages : en
Pages : 729

Get Book Here

Book Description
The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1 PDF Author: Mandeep Dalal
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.

Spin States in Biochemistry and Inorganic Chemistry

Spin States in Biochemistry and Inorganic Chemistry PDF Author: Marcel Swart
Publisher: John Wiley & Sons
ISBN: 1118898303
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description
It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.

Spin Crossover in Transition Metal Compounds III

Spin Crossover in Transition Metal Compounds III PDF Author: Philipp Gütlich
Publisher: Springer Science & Business Media
ISBN: 9783540403951
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
C. Brady, J.J. McGarvey, J.K. McCusker, H. Toftlund, D.N. Hendrickson: Time-Resolved Relaxation Studies of Spin Crossover Systems in Solution.- V. Ksenofontov, P. Gütlich et al.: Spin Crossover under Pressure.- A. Bousseksou, F. Varret, M. Goiran, K. Boukheddaden, J.P. Tuchagues: The Spin Crossover Phenomenon under High Magnetic Field.- J.-P. Tuchagues, A. Bousseksou, G. Molnár, J.J. McGarvey, F. Varret: The Role of Molecular Vibrations in the Spin Crossover Phenomenon.- W. Linert, M. Grunert, A.B. Koudriavtsev: Isokinetic and Isoequilibrium Relationships in Spin Crossover Systems.- H. Winkler, A.I: Chumakov, A.X. Trautwein: Nuclear Resonant Forward and Nuclear Inelastic Scattering Using Synchrotron Radiation for Spin Crossover Systems.- M. Sorai: Heat Capacity Studies of Spin Crossover Systems.- H. Spiering et al.: Cooperative Elastic Interactions in Spin Crossover Systems.- H. Paulsen, A.X. Trautwein: Density Functional Theory Calculations for Spin Crossover Complexes.- J.-F. Létard, P. Guionneau, L. Goux-Capes: Towards Spin Crossover Applications.

Optical Spectra and Chemical Bonding in Transition Metal Complexes

Optical Spectra and Chemical Bonding in Transition Metal Complexes PDF Author: Thomas Schönherr
Publisher: Springer Science & Business Media
ISBN: 9783540008545
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
With contributions by numerous experts

Transition Metal Compounds

Transition Metal Compounds PDF Author: Daniel Khomskii
Publisher: Cambridge University Press
ISBN: 1107020174
Category : Science
Languages : en
Pages : 501

Get Book Here

Book Description
This book describes all aspects of the physics of transition metal compounds, providing a comprehensive overview of this diverse class of solids. Set within a modern conceptual framework, this is an invaluable, up-to-date resource for graduate students, researchers and industrial practitioners in solid-state physics and chemistry, materials science, and inorganic chemistry.

Magnetism: A Supramolecular Function

Magnetism: A Supramolecular Function PDF Author: O. Kahn
Publisher: Springer Science & Business Media
ISBN: 9780792341536
Category : Science
Languages : en
Pages : 678

Get Book Here

Book Description
Molecular magnetism is a new field of research dealing with the synthesis and study of the physical properties of molecular assemblies involving open-shell units. It is essentially interdisciplinary, joining together organic, organometallic and inorganic chemists, as well as theoreticians, physicists and materials scientists. At the core of research into molecular magnetism lie design and synthesis of new molecular assemblies exhibiting bulk properties such as long-range magnetic ordering or bistability with an hysteresis effect, which confers a memory effect on the system. In such terms, magnetism may be considered a supramolecular function. The first eight contributions to this volume present the state of the art in organic supramolecular chemistry, emphasising interlocked systems and molecular trees. The following six articles are devoted to molecular materials constructed from organic radicals and transition metal units. Molecular bistability is then focused on, followed by metal-organic and coordination magnetic materials. A new approach to nano-sized particles closes the work.