Author: Olaf Post
Publisher: Springer Science & Business Media
ISBN: 3642238394
Category : Mathematics
Languages : en
Pages : 444
Book Description
Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis. In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances. Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as norm convergence of operators acting in different Hilbert spaces, an extension of the concept of boundary triples to partial differential operators, and an abstract definition of resonances via boundary triples. These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.
Spectral Analysis on Graph-like Spaces
Introduction to Spectral Theory in Hilbert Space
Author: Gilbert Helmberg
Publisher: Elsevier
ISBN: 1483164179
Category : Science
Languages : en
Pages : 362
Book Description
North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.
Publisher: Elsevier
ISBN: 1483164179
Category : Science
Languages : en
Pages : 362
Book Description
North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.
Analysis and Geometry on Graphs and Manifolds
Author: Matthias Keller
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Mathematical Results in Quantum Physics
Author: Pavel Exner
Publisher: World Scientific
ISBN: 9814350354
Category : Science
Languages : en
Pages : 287
Book Description
The volume collects papers from talks given at QMath11 ? Mathematical Results in Quantum Physics, which was held in Hradec Kr lov, September 2010. These papers bring new and interesting results in quantum mechanics and information, quantum field theory, random systems, quantum chaos, as well as in the physics of social systems. Part of the contribution is dedicated to Ari Laptev on the occasion of his 60th birthday, in recognition of his mathematical results and his service to the community. The QMath conference series has played an important role in mathematical physics for more than two decades, typically attracting many of the best results achieved in the last three-year period, and the meeting in Hradec Kr lov was no exception.
Publisher: World Scientific
ISBN: 9814350354
Category : Science
Languages : en
Pages : 287
Book Description
The volume collects papers from talks given at QMath11 ? Mathematical Results in Quantum Physics, which was held in Hradec Kr lov, September 2010. These papers bring new and interesting results in quantum mechanics and information, quantum field theory, random systems, quantum chaos, as well as in the physics of social systems. Part of the contribution is dedicated to Ari Laptev on the occasion of his 60th birthday, in recognition of his mathematical results and his service to the community. The QMath conference series has played an important role in mathematical physics for more than two decades, typically attracting many of the best results achieved in the last three-year period, and the meeting in Hradec Kr lov was no exception.
Mathematical Results In Quantum Physics - Proceedings Of The Qmath11 (With Dvd-rom)
Author: Pavel Exner
Publisher: World Scientific
ISBN: 981446046X
Category : Science
Languages : en
Pages : 287
Book Description
The volume collects papers from talks given at QMath11 — Mathematical Results in Quantum Physics, which was held in Hradec Králové, September 2010. These papers bring new and interesting results in quantum mechanics and information, quantum field theory, random systems, quantum chaos, as well as in the physics of social systems. Part of the contribution is dedicated to Ari Laptev on the occasion of his 60th birthday, in recognition of his mathematical results and his service to the community. The QMath conference series has played an important role in mathematical physics for more than two decades, typically attracting many of the best results achieved in the last three-year period, and the meeting in Hradec Králové was no exception.
Publisher: World Scientific
ISBN: 981446046X
Category : Science
Languages : en
Pages : 287
Book Description
The volume collects papers from talks given at QMath11 — Mathematical Results in Quantum Physics, which was held in Hradec Králové, September 2010. These papers bring new and interesting results in quantum mechanics and information, quantum field theory, random systems, quantum chaos, as well as in the physics of social systems. Part of the contribution is dedicated to Ari Laptev on the occasion of his 60th birthday, in recognition of his mathematical results and his service to the community. The QMath conference series has played an important role in mathematical physics for more than two decades, typically attracting many of the best results achieved in the last three-year period, and the meeting in Hradec Králové was no exception.
Mathematical Technology of Networks
Author: Delio Mugnolo
Publisher: Springer
ISBN: 3319166190
Category : Mathematics
Languages : en
Pages : 210
Book Description
Dynamical models on graphs or random graphs are increasingly used in applied sciences as mathematical tools to study complex systems whose exact structure is too complicated to be known in detail. Besides its importance in applied sciences, the field is increasingly attracting the interest of mathematicians and theoretical physicists also because of the fundamental phenomena (synchronization, phase transitions etc.) that can be studied in the relatively simple framework of dynamical models of random graphs. This volume was developed from the Mathematical Technology of Networks conference held in Bielefeld, Germany in December 2013. The conference was designed to bring together functional analysts, mathematical physicists, and experts in dynamical systems. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures.
Publisher: Springer
ISBN: 3319166190
Category : Mathematics
Languages : en
Pages : 210
Book Description
Dynamical models on graphs or random graphs are increasingly used in applied sciences as mathematical tools to study complex systems whose exact structure is too complicated to be known in detail. Besides its importance in applied sciences, the field is increasingly attracting the interest of mathematicians and theoretical physicists also because of the fundamental phenomena (synchronization, phase transitions etc.) that can be studied in the relatively simple framework of dynamical models of random graphs. This volume was developed from the Mathematical Technology of Networks conference held in Bielefeld, Germany in December 2013. The conference was designed to bring together functional analysts, mathematical physicists, and experts in dynamical systems. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures.
Control Theory of Infinite-Dimensional Systems
Author: Joachim Kerner
Publisher: Springer Nature
ISBN: 3030358984
Category : Science
Languages : en
Pages : 201
Book Description
This book presents novel results by participants of the conference “Control theory of infinite-dimensional systems” that took place in January 2018 at the FernUniversität in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
Publisher: Springer Nature
ISBN: 3030358984
Category : Science
Languages : en
Pages : 201
Book Description
This book presents novel results by participants of the conference “Control theory of infinite-dimensional systems” that took place in January 2018 at the FernUniversität in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
Introduction to Quantum Graphs
Author: Gregory Berkolaiko
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Symmetries of Nonlinear PDEs on Metric Graphs and Branched Networks
Author: Dmitry Pelinovsky
Publisher: MDPI
ISBN: 3039217208
Category : Mathematics
Languages : en
Pages : 144
Book Description
This Special Issue focuses on recent progress in a new area of mathematical physics and applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched networks. Graphs represent a system of edges connected at one or more branching points (vertices). The connection rule determines the graph topology. When the edges can be assigned a length and the wave functions on the edges are defined in metric spaces, the graph is called a metric graph. Evolution equations on metric graphs have attracted much attention as effective tools for the modeling of particle and wave dynamics in branched structures and networks. Since branched structures and networks appear in different areas of contemporary physics with many applications in electronics, biology, material science, and nanotechnology, the development of effective modeling tools is important for the many practical problems arising in these areas. The list of important problems includes searches for standing waves, exploring of their properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue is a representative sample of the works devoted to the solutions of these and other problems.
Publisher: MDPI
ISBN: 3039217208
Category : Mathematics
Languages : en
Pages : 144
Book Description
This Special Issue focuses on recent progress in a new area of mathematical physics and applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched networks. Graphs represent a system of edges connected at one or more branching points (vertices). The connection rule determines the graph topology. When the edges can be assigned a length and the wave functions on the edges are defined in metric spaces, the graph is called a metric graph. Evolution equations on metric graphs have attracted much attention as effective tools for the modeling of particle and wave dynamics in branched structures and networks. Since branched structures and networks appear in different areas of contemporary physics with many applications in electronics, biology, material science, and nanotechnology, the development of effective modeling tools is important for the many practical problems arising in these areas. The list of important problems includes searches for standing waves, exploring of their properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue is a representative sample of the works devoted to the solutions of these and other problems.
Boundary Value Problems, Weyl Functions, and Differential Operators
Author: Jussi Behrndt
Publisher: Springer Nature
ISBN: 3030367142
Category : Mathematics
Languages : en
Pages : 775
Book Description
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
Publisher: Springer Nature
ISBN: 3030367142
Category : Mathematics
Languages : en
Pages : 775
Book Description
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.