Author: Joshua M. Pearce
Publisher:
ISBN: 9783038422174
Category :
Languages : en
Pages :
Book Description
Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells. Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites. 2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms. 3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes. 4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices. 5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts
Photovoltaic Materials and Electronic Devices
Author: Joshua M. Pearce
Publisher:
ISBN: 9783038422174
Category :
Languages : en
Pages :
Book Description
Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells. Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites. 2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms. 3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes. 4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices. 5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts
Publisher:
ISBN: 9783038422174
Category :
Languages : en
Pages :
Book Description
Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells. Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites. 2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms. 3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes. 4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices. 5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts
Emerging Photovoltaic Materials
Author: Santosh K. Kurinec
Publisher: John Wiley & Sons
ISBN: 1119407680
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.
Publisher: John Wiley & Sons
ISBN: 1119407680
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Chlorides
Languages : en
Pages : 764
Book Description
Publisher:
ISBN:
Category : Chlorides
Languages : en
Pages : 764
Book Description
Sustainable Material Solutions for Solar Energy Technologies
Author: Mariana Amorim Fraga
Publisher: Elsevier
ISBN: 0128215933
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. - Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage - Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy - Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis
Publisher: Elsevier
ISBN: 0128215933
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. - Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage - Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy - Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis
Photovoltaic Science and Technology
Author: J. N. Roy
Publisher: Cambridge University Press
ISBN: 1108415245
Category : Science
Languages : en
Pages : 445
Book Description
"Discusses the principles of operation of photovoltaic devices, their limitations, choice of materials and maximum efficiencies"--
Publisher: Cambridge University Press
ISBN: 1108415245
Category : Science
Languages : en
Pages : 445
Book Description
"Discusses the principles of operation of photovoltaic devices, their limitations, choice of materials and maximum efficiencies"--
Synerjy
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 540
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 540
Book Description
STI Review, Volume 1999 Issue 2 Special Issue on Sustainable Development
Author: OECD
Publisher: OECD Publishing
ISBN: 9264181172
Category :
Languages : en
Pages : 214
Book Description
This special issue of STI Review focuses on technology and sustainable development.
Publisher: OECD Publishing
ISBN: 9264181172
Category :
Languages : en
Pages : 214
Book Description
This special issue of STI Review focuses on technology and sustainable development.
Publications of the National Institute of Standards and Technology ... Catalog
Author: National Institute of Standards and Technology (U.S.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 1162
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1162
Book Description
Advanced Micro- and Nanomaterials for Photovoltaics
Author:
Publisher: Elsevier
ISBN: 0128145021
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
Nanomaterials are becoming increasingly important photovoltaic technologies from absorbers to contacts. This book is dedicated to describing the novel materials and technologies for photovoltaics that derive from these new and novel approaches in solar technologies. We have collected a set of renowned experts in their respective fields as authors and their expertise covers a broad set of areas including novel oxides, quantum dots, CZTS and organic solar cells, as well as light management and reliability testing. The organization of the book is divided into three sections; the first part deals with emerging photovoltaic absorbers and absorber approaches, the second part is focused on novel solar cell architectures and device concepts and components; and the last part is focused on their integration into module technologies. The first chapter is an introduction to the basics of solar cells technology facilitating an understanding by the non-expert of the following chapters. The book is intended for academics and professionals, at the research and R&D level in materials and devices, who are looking for opportunities for applications in the solar materials, devices and modules areas. Hopefully it will serve as a reference for students and professionals looking into the potential and development of novel photovoltaic technologies, researchers looking into the development of innovative projects, and teachers in the field of energy and sustainability. - Showcases a range of cutting-edge photovoltaic materials and devices, exploring their special properties and how they are best used - Assesses the challenges of fabricating solar cell devices using nanotechnology - Explores how producing cheaper modules, increasing reliability and increasing efficiency have led to new applications for photovoltaic devices
Publisher: Elsevier
ISBN: 0128145021
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
Nanomaterials are becoming increasingly important photovoltaic technologies from absorbers to contacts. This book is dedicated to describing the novel materials and technologies for photovoltaics that derive from these new and novel approaches in solar technologies. We have collected a set of renowned experts in their respective fields as authors and their expertise covers a broad set of areas including novel oxides, quantum dots, CZTS and organic solar cells, as well as light management and reliability testing. The organization of the book is divided into three sections; the first part deals with emerging photovoltaic absorbers and absorber approaches, the second part is focused on novel solar cell architectures and device concepts and components; and the last part is focused on their integration into module technologies. The first chapter is an introduction to the basics of solar cells technology facilitating an understanding by the non-expert of the following chapters. The book is intended for academics and professionals, at the research and R&D level in materials and devices, who are looking for opportunities for applications in the solar materials, devices and modules areas. Hopefully it will serve as a reference for students and professionals looking into the potential and development of novel photovoltaic technologies, researchers looking into the development of innovative projects, and teachers in the field of energy and sustainability. - Showcases a range of cutting-edge photovoltaic materials and devices, exploring their special properties and how they are best used - Assesses the challenges of fabricating solar cell devices using nanotechnology - Explores how producing cheaper modules, increasing reliability and increasing efficiency have led to new applications for photovoltaic devices
Analytical and Diagnostic Techniques for Semiconductor Materials, Devices and Processes
Author: Bernd O. Kolbesen (Chemiker.)
Publisher: The Electrochemical Society
ISBN: 9781566772396
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
Publisher: The Electrochemical Society
ISBN: 9781566772396
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description