Author: National Research Council
Publisher: National Academies Press
ISBN: 0309313953
Category : Science
Languages : en
Pages : 37
Book Description
In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.
Solar and Space Physics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309313953
Category : Science
Languages : en
Pages : 37
Book Description
In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.
Publisher: National Academies Press
ISBN: 0309313953
Category : Science
Languages : en
Pages : 37
Book Description
In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.
High-level Spacecraft Charging Environments Near Geosynchronous Orbit
Author: E. G. Mullen
Publisher:
ISBN:
Category : Electrons
Languages : en
Pages : 52
Book Description
High-level spacecraft charging events in sunlight are discussed and statistically analyzed to determine environmental parameters critical to charging and the region of space near geosynchronous altitude where charging occurs. Significant levels of spacecraft charging are shown to occur only between 1900 LT and 0900 LT at any altitude or latitude of the SCATHA satellite orbit. High-level charging is shown to occur only during periods when the magnetic activity index is 2+ or greater. Distribution functions of energetic electrons and ions are presented for 3 high-level charging periods on days 114, 241 and 363, 1979. Moments of the distribution functions are determined, and fitting techniques used to derive two-Maxwellian densities and temperatures are discussed. Results are provided in a format usable in satellite design specifications.
Publisher:
ISBN:
Category : Electrons
Languages : en
Pages : 52
Book Description
High-level spacecraft charging events in sunlight are discussed and statistically analyzed to determine environmental parameters critical to charging and the region of space near geosynchronous altitude where charging occurs. Significant levels of spacecraft charging are shown to occur only between 1900 LT and 0900 LT at any altitude or latitude of the SCATHA satellite orbit. High-level charging is shown to occur only during periods when the magnetic activity index is 2+ or greater. Distribution functions of energetic electrons and ions are presented for 3 high-level charging periods on days 114, 241 and 363, 1979. Moments of the distribution functions are determined, and fitting techniques used to derive two-Maxwellian densities and temperatures are discussed. Results are provided in a format usable in satellite design specifications.
Geomagnetism, Aeronomy and Space Weather
Author: Mioara Mandea
Publisher: Cambridge University Press
ISBN: 1108418481
Category : Science
Languages : en
Pages : 347
Book Description
An interdisciplinary review of research in geomagnetism, aeronomy and space weather, written by eminent researchers from these fields.
Publisher: Cambridge University Press
ISBN: 1108418481
Category : Science
Languages : en
Pages : 347
Book Description
An interdisciplinary review of research in geomagnetism, aeronomy and space weather, written by eminent researchers from these fields.
Space Weather Study Using Multipoint Techniques
Author: L.-H. Lyu
Publisher: Elsevier
ISBN: 0080541518
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Magnetic storms may cause damage to satellites, radiation hazard to astronauts, disruption of radio communications, and interruption of ground electric power lines. Space weather prediction becomes an important issue to be addressed in the twenty-first century. International Solar Terrestrial Program (ISTP) employs five satellites to probe the solar wind and magnetosphere, providing valuable information for space weather prediction. The Asia-Pacific region is becoming one of the economic centers in the world. The continuous drive for scientific and technological progress in parallel is evidenced by the establishment of many space research organizations in many countries of this area. In Taiwan, the National Space Program Office (NSPO) established her third satellite program -- COSMIC (Constellation Obsering Systems for Meteorology, Ionosphere and Climate), which is a science experiment to demonstrate the utility of atmospheric radio limb soundings from a constellation of six low-earth orbiting satellites in operational weather prediction, space weather monitoring, and climate monitoring and research.In order to provide a forum to discuss the many new results in this rapid-moving field and to forge international collaborations, a three-day COSPAR Colloquium on "Space Weather Study Using Multipoint Techniques" was held. This colloquium have provided a forum for experts from the international community to present new results on the timely topic "space weather".
Publisher: Elsevier
ISBN: 0080541518
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Magnetic storms may cause damage to satellites, radiation hazard to astronauts, disruption of radio communications, and interruption of ground electric power lines. Space weather prediction becomes an important issue to be addressed in the twenty-first century. International Solar Terrestrial Program (ISTP) employs five satellites to probe the solar wind and magnetosphere, providing valuable information for space weather prediction. The Asia-Pacific region is becoming one of the economic centers in the world. The continuous drive for scientific and technological progress in parallel is evidenced by the establishment of many space research organizations in many countries of this area. In Taiwan, the National Space Program Office (NSPO) established her third satellite program -- COSMIC (Constellation Obsering Systems for Meteorology, Ionosphere and Climate), which is a science experiment to demonstrate the utility of atmospheric radio limb soundings from a constellation of six low-earth orbiting satellites in operational weather prediction, space weather monitoring, and climate monitoring and research.In order to provide a forum to discuss the many new results in this rapid-moving field and to forge international collaborations, a three-day COSPAR Colloquium on "Space Weather Study Using Multipoint Techniques" was held. This colloquium have provided a forum for experts from the international community to present new results on the timely topic "space weather".
The Magnetotelluric Method
Author: Alan D. Chave
Publisher: Cambridge University Press
ISBN: 1107376971
Category : Science
Languages : en
Pages : 571
Book Description
The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.
Publisher: Cambridge University Press
ISBN: 1107376971
Category : Science
Languages : en
Pages : 571
Book Description
The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics, from the salient physics and its mathematical representation to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students, and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System
Author: Yukitoshi Nishimura
Publisher: Elsevier
ISBN: 0128213736
Category : Science
Languages : en
Pages : 566
Book Description
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. - Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics - Reviews recent and key findings in the cutting-edge of the science - Discusses open questions and pathways for understanding how the field is evolving
Publisher: Elsevier
ISBN: 0128213736
Category : Science
Languages : en
Pages : 566
Book Description
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. - Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics - Reviews recent and key findings in the cutting-edge of the science - Discusses open questions and pathways for understanding how the field is evolving
Guide to Mitigating Spacecraft Charging Effects
Author: Henry B. Garrett
Publisher: John Wiley & Sons
ISBN: 1118241339
Category : Science
Languages : en
Pages : 202
Book Description
The definitive guide to the modern body of spacecraft charging knowledge—from first principles for the beginner to intermediate and advanced concepts The only book to blend the theoretical and practical aspects of spacecraft charging, Guide to Mitigating Spacecraft Charging Effects defines the environment that not only creates the aurora, but which also can have significant effects on spacecraft, such as disruption of science measurements and solar arrays from electrostatic discharge (ESD). It describes in detail the physics of the interaction phenomenon as well as how to construct spacecraft to enhance their survivability in the harsh environment of space. Combining the authors' extensive experience in spacecraft charging—and in their provision of design support to NASA, JPL, the commercial satellite market, and numerous other projects—this incredible book offers both a robust physics background and practical advice for neophytes in the field and experienced plasma physicists and spacecraft engineers. In addition to containing numerous equations, graphs, tables, references, and illustrations, Guide to Mitigating Spacecraft Charging Effects covers: Solar cell technology, especially higher voltage arrays, and the new design approaches that are appropriate for them Information about the space plasma environment New analytic computer codes to analyze spacecraft charging Spacecraft anomalies and failures which emphasized designs that are of greater importance than others
Publisher: John Wiley & Sons
ISBN: 1118241339
Category : Science
Languages : en
Pages : 202
Book Description
The definitive guide to the modern body of spacecraft charging knowledge—from first principles for the beginner to intermediate and advanced concepts The only book to blend the theoretical and practical aspects of spacecraft charging, Guide to Mitigating Spacecraft Charging Effects defines the environment that not only creates the aurora, but which also can have significant effects on spacecraft, such as disruption of science measurements and solar arrays from electrostatic discharge (ESD). It describes in detail the physics of the interaction phenomenon as well as how to construct spacecraft to enhance their survivability in the harsh environment of space. Combining the authors' extensive experience in spacecraft charging—and in their provision of design support to NASA, JPL, the commercial satellite market, and numerous other projects—this incredible book offers both a robust physics background and practical advice for neophytes in the field and experienced plasma physicists and spacecraft engineers. In addition to containing numerous equations, graphs, tables, references, and illustrations, Guide to Mitigating Spacecraft Charging Effects covers: Solar cell technology, especially higher voltage arrays, and the new design approaches that are appropriate for them Information about the space plasma environment New analytic computer codes to analyze spacecraft charging Spacecraft anomalies and failures which emphasized designs that are of greater importance than others
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1292
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1292
Book Description
Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace
Author: Evgeny Mishin
Publisher: Elsevier
ISBN: 0128209313
Category : Science
Languages : en
Pages : 634
Book Description
Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace presents a comprehensive examination of the self-consistent processes leading to multiscale electromagnetic and plasma structures in the magnetosphere and ionosphere near the plasmapause, particularly in the auroral and subauroral geospace. It utilizes simulations and a large number of relevant in situ measurements conducted by the most recent satellite missions, as well as ground-based optical and radar observations to verify the conclusions and analysis. Including several case studies of observations related to prominent geospacer events, the book also provides experimental and numerical results throughout the chapters to further enhance understanding of how the same physical mechanisms produce different phenomena at different regions of the near-Earth space environment. Additionally, the comprehensive description of mechanisms responsible for space weather effects will give readers a broad foundation of wave and particle processes in the near-Earth magnetosphere. As such, Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace is a cutting-edge reference for space physicists looking to better understand plasma physics in geospace. - Presents a unified approach to wave and particle phenomena occurring in the auroral and subauroral geospace - Summarizes the most current theoretical concepts related to the generation of the large-scale electric field near the plasmapause by flows of hot plasma from the reconnection site - Includes case studies of the observations related to the most "famous events during the last 20 years as well as a large number of experimental and numerical results illustrated throughout the text
Publisher: Elsevier
ISBN: 0128209313
Category : Science
Languages : en
Pages : 634
Book Description
Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace presents a comprehensive examination of the self-consistent processes leading to multiscale electromagnetic and plasma structures in the magnetosphere and ionosphere near the plasmapause, particularly in the auroral and subauroral geospace. It utilizes simulations and a large number of relevant in situ measurements conducted by the most recent satellite missions, as well as ground-based optical and radar observations to verify the conclusions and analysis. Including several case studies of observations related to prominent geospacer events, the book also provides experimental and numerical results throughout the chapters to further enhance understanding of how the same physical mechanisms produce different phenomena at different regions of the near-Earth space environment. Additionally, the comprehensive description of mechanisms responsible for space weather effects will give readers a broad foundation of wave and particle processes in the near-Earth magnetosphere. As such, Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace Nonlinear Wave and Plasma Structures in the Auroral and Subauroral Geospace is a cutting-edge reference for space physicists looking to better understand plasma physics in geospace. - Presents a unified approach to wave and particle phenomena occurring in the auroral and subauroral geospace - Summarizes the most current theoretical concepts related to the generation of the large-scale electric field near the plasmapause by flows of hot plasma from the reconnection site - Includes case studies of the observations related to the most "famous events during the last 20 years as well as a large number of experimental and numerical results illustrated throughout the text