Some Generalized Kac-Moody Algebras with Known Root Multiplicities

Some Generalized Kac-Moody Algebras with Known Root Multiplicities PDF Author: Peter Niemann
Publisher: American Mathematical Soc.
ISBN: 0821828886
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
Starting from Borcherds' fake monster Lie algebra, this text construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including $AE_3$.

Some Generalized Kac-Moody Algebras with Known Root Multiplicities

Some Generalized Kac-Moody Algebras with Known Root Multiplicities PDF Author: Peter Niemann
Publisher: American Mathematical Soc.
ISBN: 0821828886
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
Starting from Borcherds' fake monster Lie algebra, this text construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including $AE_3$.

Some Generalized Kac-Moody Algebras with Known Root Multiplicities

Some Generalized Kac-Moody Algebras with Known Root Multiplicities PDF Author: Nanhua XI
Publisher:
ISBN: 9781470403393
Category : Electronic books
Languages : en
Pages : 119

Get Book Here

Book Description
Introduction Generalized Kac-Moody algebras Modular forms Lattices and their Theta-functions The proof of Theorem 1.7 The real simple roots Hyperbolic Lie algebras Appendix A Appendix B Bibliography Notation

On Central Critical Values of the Degree Four $L$-functions for $\mathrm {GSp}(4)$: The Fundamental Lemma

On Central Critical Values of the Degree Four $L$-functions for $\mathrm {GSp}(4)$: The Fundamental Lemma PDF Author: Masaaki Furusawa
Publisher: American Mathematical Soc.
ISBN: 0821833286
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
Proves two equalities of local Kloosterman integrals on $\mathrm{GSp}\left(4\right)$, the group of $4$ by $4$ symplectic similitude matrices. This book conjectures that both of Jacquet's relative trace formulas for the central critical values of the $L$-functions for $\mathrm{g1}\left(2\right)$ in [{J1}] and [{J2}].

$h$-Principles and Flexibility in Geometry

$h$-Principles and Flexibility in Geometry PDF Author: Hansjörg Geiges
Publisher: American Mathematical Soc.
ISBN: 0821833154
Category : Mathematics
Languages : en
Pages : 74

Get Book Here

Book Description
The notion of homotopy principle or $h$-principle is one of the key concepts in an elegant language developed by Gromov to deal with a host of questions in geometry and topology. Roughly speaking, for a certain differential geometric problem to satisfy the $h$-principle is equivalent to saying that a solution to the problem exists whenever certain obvious topological obstructions vanish. The foundational examples for applications of Gromov's ideas include (i) Hirsch-Smale immersion theory, (ii) Nash-Kuiper $C^1$-isometric immersion theory, (iii) existence of symplectic and contact structures on open manifolds. Gromov has developed several powerful methods that allow one to prove $h$-principles. These notes, based on lectures given in the Graduiertenkolleg of Leipzig University, present two such methods which are strong enough to deal with applications (i) and (iii).

Topological Invariants of the Complement to Arrangements of Rational Plane Curves

Topological Invariants of the Complement to Arrangements of Rational Plane Curves PDF Author: José Ignacio Cogolludo-Agustín
Publisher: American Mathematical Soc.
ISBN: 0821829424
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
The authors analyse two topological invariants of an embedding of an arrangement of rational plane curves in the projective complex plane, namely, the cohomology ring of the complement and the characteristic varieties. Their main result states that the cohomology ring of the complement to a rational arrangement is generated by logarithmic 1 and 2-forms and its structure depends on a finite number of invariants of the curve (its combinatorial type).

Quasianalytic Monogenic Solutions of a Cohomological Equation

Quasianalytic Monogenic Solutions of a Cohomological Equation PDF Author: Stefano Marmi
Publisher: American Mathematical Soc.
ISBN: 0821833251
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
We prove that the solutions of a cohomological equation of complex dimension one and in the analytic category have a monogenic dependence on the parameter. This cohomological equation is the standard linearized conjugacy equation for germs of holomorphic maps in a neighborhood of a fixed point.

Anisotropic Hardy Spaces and Wavelets

Anisotropic Hardy Spaces and Wavelets PDF Author: Marcin Bownik
Publisher: American Mathematical Soc.
ISBN: 082183326X
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
Investigates the anisotropic Hardy spaces associated with very general discrete groups of dilations. This book includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calderon and Torchinsky.

Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance

Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance PDF Author: Marc Aristide Rieffel
Publisher: American Mathematical Soc.
ISBN: 0821835181
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
By a quantum metric space we mean a $C DEGREES*$-algebra (or more generally an order-unit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov-Hausdorff di

Elliptic Partial Differential Operators and Symplectic Algebra

Elliptic Partial Differential Operators and Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821832352
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x}, D)=\sum_{0\, \leq\, \left s\right \, \leq\,2m}a_{s} (\mathbf{x})D DEGREES{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C DEGREES{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E} DEGREES{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimensio

The Lifted Root Number Conjecture and Iwasawa Theory

The Lifted Root Number Conjecture and Iwasawa Theory PDF Author: Jürgen Ritter
Publisher: American Mathematical Soc.
ISBN: 0821829289
Category : Mathematics
Languages : en
Pages : 105

Get Book Here

Book Description
This paper concerns the relation between the Lifted Root Number Conjecture, as introduced in [GRW2], and a new equivariant form of Iwasawa theory. A main conjecture of equivariant Iwasawa theory is formulated, and its equivalence to the Lifted Root Number Conjecture is shown subject to the validity of a semi-local version of the Root Number Conjecture, which itself is proved in the case of a tame extension of real abelian fields.