Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

Handbook of Climate Change Mitigation

Handbook of Climate Change Mitigation PDF Author: Wei-Yin Chen
Publisher: Springer
ISBN: 9781441979926
Category : Science
Languages : en
Pages : 2130

Get Book Here

Book Description
There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.

Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents

Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Combustion of fossil fuels is one of the major sources of the greenhouse gas CO2. Pressure swing adsorption/sorption (PSA/PSS) and temperature swing adsorption/sorption (TSA/TSS) are some of the potential techniques that could be utilized for removal of CO2 from fuel gas streams. It is very important to develop sorbents to remove CO2 from fuel gas streams that are applicable for a wide range of temperatures. NETL researchers have developed novel CO2 capture sorbents for low, moderate, and high temperature applications. A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C. The sorbent is regenerable at 60 - 80 °C. The sorbent formulations were prepared to be suitable for various reactor configurations (i.e., fixed and fluidized bed). Minimum fluidization gas velocities were also determined. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas indicated that the sorbent retains its CO2 sorption capacity with a CO2 removal efficiency of approximately 99% and was unaffected by presence of water vapor. The sorbent was subsequently commercially prepared by Süd Chemie to determine the viability of the sorbent for mass production. Subsequent testing showed that the commercially-synthesized sorbent possesses the same properties as the lab-synthesized equivalent. An innovative solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200 - 315°C from high pressure gas streams suitable for IGCC systems. The sorbent showed very high capacity for CO2 removal from a gas streams containing 28% CO2 at 200 °C and at 20 atm during a lab scale reactor test. This sorbent can be regenerated at 20 atm and at 375 °C utilizing a gas stream containing steam. High pressure enhanced the CO2 sorption process. Bench scale testing showed consistent capacities and regenerability. A unique high temperature solid sorbent was developed for CO2 capture at temperatures of 500 - 700°C. Bench scale testing of the sorbent yielded very high CO2 capture capacity from a gas stream containing 10% CO2, 30% H2, 15% H2O, and 25% He. Regeneration of the sorbent is possible at 800 - 900 °C.

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Get Book Here

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Solid Sorbents for CO2 Capture from Post-Combustion and Pre-Combustion Gas Streams

Solid Sorbents for CO2 Capture from Post-Combustion and Pre-Combustion Gas Streams PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C for both fixed bed and fluidized bed reactor applications. The sorbent is regenerable at 60-80 °C. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99%. A second, novel solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200-315 °C from high pressure gas streams (i.e., suitable for IGCC systems). The sorbent showed very high capacity for CO2 removal from gas streams containing 28% CO2 at 200 °C and 11.2 atm during lab-scale flow reactor tests as well as regenerability at 375 °C.

Climate Intervention

Climate Intervention PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309305322
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.

Evaluation of Sorbents for the Cleanup of Coal-derived Synthesis Gas at Elevated Temperatures

Evaluation of Sorbents for the Cleanup of Coal-derived Synthesis Gas at Elevated Temperatures PDF Author: David Joseph Couling
Publisher:
ISBN:
Category :
Languages : en
Pages : 182

Get Book Here

Book Description
Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. As with any coal-based technology, however, it is of critical importance to develop efficient techniques to reduce the emissions of its many environmental pollutants, including not only carbon dioxide, but also sulfur and trace metals such as lead or mercury. One potential method to improve the efficiency for IGCC is through the use of solid sorbents that operate at elevated temperatures. Because many of these technologies are in their infancy and have yet to be commercially demonstrated, a strong desire exists to develop methods to critically evaluate these technologies more rapidly and inexpensively than can be done through experiments alone. In this thesis we applied computational techniques to investigate the feasibility of sorbents for the warm temperature removal of two key pollutants, carbon dioxide and mercury. We developed pressure swing adsorption models for the removal of carbon dioxide using both metal oxide and metal hydroxide sorbents and incorporated them into IGCC process simulations in Aspen Plus in order to evaluate the energy penalties associated with using these carbon dioxide capture technologies. We identified the optimal properties of CO2 sorbents for this application. Although warm CO2 capture using solid sorbents could lead to slight efficiency increases over conventional cold cleanup methods, the potential gains are much smaller than previously estimated. In addition, we used density functional theory to screen binary metal alloys, metal oxides, and metal sulfides as potential sorbents for mercury capture. We computed the thermochemistry of 40 different potential mercury sorbents to evaluate their affinity for mercury at the low concentrations and elevated temperatures found in the coal gas stream. We also evaluated the tendency of these sorbent materials to react with major components of the gas stream, such as hydrogen or steam. Finally, we tested the mercury adsorption characteristics of three of the most promising materials experimentally. Our experimental observations showed good qualitative agreement with our density functional theory calculations.

Carbon Dioxide Utilization for Global Sustainability

Carbon Dioxide Utilization for Global Sustainability PDF Author: Sang-Eon Park
Publisher: Elsevier
ISBN: 0080472176
Category : Technology & Engineering
Languages : en
Pages : 626

Get Book Here

Book Description
Addressing global environmental problems, such as global warming is essential to global sustainability. Continued research leads to advancement in standard methods and produces new data. Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th ICCDU (International Conference on Carbon Dioxide Utilization) reflects the most recent research results, as well as stimulating scientific discussions with new challenges in advancing the development of carbon dioxide utilization. Drawing on a wealth of information, this well structured book will benefit students, researchers and consultants looking to catch up on current developments in environmental and chemical engineering.* Provides comprehensive data on CO2 utilisation* Contains up-to-date information, including recent research trends* Is written for students, researchers and consultants in environmental and chemical engineering

Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures

Carbon Dioxide Adsorbents Containing Magnesium Oxide Suitable for Use at High Temperatures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub. 2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Regenerable sorbents based on sodium carbonate (Na2CO3) can be used to separate carbon dioxide (CO2) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO2 is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO2 separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO2 present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO2 removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO2 and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO2 and water vapor. After condensation of the water, a pure CO2 stream can be obtained. TGA testing showed that the Na2CO3 sorbents react irreversibly with sulfur dioxide (SO2) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na2CO3-based sorbent that includes a co-current downflow reactor system for adsorption of CO2 and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO2 gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO2 removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO2 removal system based on monoethanolamine (MEA).