Author: Elizabeth A Gibson
Publisher: Royal Society of Chemistry
ISBN: 1788018508
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
Energy is an important area of contemporary research, with clear societal benefits. It is a fast-developing and application-driven research area, with chemistry leading the discovery of new solids, which are then studied by physicists and materials scientists. Solar Energy Capture Materials introduces a range of the different inorganic materials used, with an emphasis on how solid-state chemistry allows development of new functional solids for energy applications. Dedicated chapters cover silicon-based photovoltaic devices, compound semiconductor-based solar cells, dye-sensitized solar cells (DSC), solution processed solar cells and emerging materials. Edited and written by world-renowned scientists, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.
Solar Energy Capture Materials
Author: Elizabeth A Gibson
Publisher: Royal Society of Chemistry
ISBN: 1788018508
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
Energy is an important area of contemporary research, with clear societal benefits. It is a fast-developing and application-driven research area, with chemistry leading the discovery of new solids, which are then studied by physicists and materials scientists. Solar Energy Capture Materials introduces a range of the different inorganic materials used, with an emphasis on how solid-state chemistry allows development of new functional solids for energy applications. Dedicated chapters cover silicon-based photovoltaic devices, compound semiconductor-based solar cells, dye-sensitized solar cells (DSC), solution processed solar cells and emerging materials. Edited and written by world-renowned scientists, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.
Publisher: Royal Society of Chemistry
ISBN: 1788018508
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
Energy is an important area of contemporary research, with clear societal benefits. It is a fast-developing and application-driven research area, with chemistry leading the discovery of new solids, which are then studied by physicists and materials scientists. Solar Energy Capture Materials introduces a range of the different inorganic materials used, with an emphasis on how solid-state chemistry allows development of new functional solids for energy applications. Dedicated chapters cover silicon-based photovoltaic devices, compound semiconductor-based solar cells, dye-sensitized solar cells (DSC), solution processed solar cells and emerging materials. Edited and written by world-renowned scientists, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.
Solar Energy Capture Materials
Author: Elizabeth A Gibson
Publisher: Royal Society of Chemistry
ISBN: 1788011074
Category : Science
Languages : en
Pages : 260
Book Description
This book introduces a range of the different inorganic materials used in solar energy capture materials.
Publisher: Royal Society of Chemistry
ISBN: 1788011074
Category : Science
Languages : en
Pages : 260
Book Description
This book introduces a range of the different inorganic materials used in solar energy capture materials.
Solar Cells
Author: Tom Markvart
Publisher: Academic Press
ISBN: 0123869641
Category : Technology & Engineering
Languages : en
Pages : 655
Book Description
Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner's Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture of solar cells. It is essential reading for engineers, installers, designers, and policy-makers who need to understand the science behind the solar cells of today, and tomorrow, in order to take solar energy to the next level. A thorough update to the definitive reference to solar cells, created by a cast of international experts from industry and academia to ensure the highest quality information from multiple perspectives Covers the whole spectrum of solar cell information, from basic scientific background, to the latest advances in materials, to manufacturing issues, to testing and calibration. Case studies, practical examples and reports on the latest advances take the new edition of this amazing resource beyond a simple amalgamation of a vast amount of knowledge, into the realm of real world applications
Publisher: Academic Press
ISBN: 0123869641
Category : Technology & Engineering
Languages : en
Pages : 655
Book Description
Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner's Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture of solar cells. It is essential reading for engineers, installers, designers, and policy-makers who need to understand the science behind the solar cells of today, and tomorrow, in order to take solar energy to the next level. A thorough update to the definitive reference to solar cells, created by a cast of international experts from industry and academia to ensure the highest quality information from multiple perspectives Covers the whole spectrum of solar cell information, from basic scientific background, to the latest advances in materials, to manufacturing issues, to testing and calibration. Case studies, practical examples and reports on the latest advances take the new edition of this amazing resource beyond a simple amalgamation of a vast amount of knowledge, into the realm of real world applications
Solar Cells
Author: Ahmed Mourtada Elseman
Publisher: BoD – Books on Demand
ISBN: 1838810161
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.
Publisher: BoD – Books on Demand
ISBN: 1838810161
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.
Green Energy
Author: Suman Lata Tripathi
Publisher: John Wiley & Sons
ISBN: 1119760763
Category : Science
Languages : en
Pages : 640
Book Description
Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area. To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country. Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.
Publisher: John Wiley & Sons
ISBN: 1119760763
Category : Science
Languages : en
Pages : 640
Book Description
Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area. To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country. Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.
Introduction to Materials for Advanced Energy Systems
Author: Colin Tong
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Materials Challenges
Author: Stuart J C Irvine
Publisher: Royal Society of Chemistry
ISBN: 1849733465
Category : Science
Languages : en
Pages : 357
Book Description
This book will provide an authoritative reference on the various aspects of materials science that will impact the next generation of photovoltaic (PV) module technology. The materials emphasis will bring a fresh perspective to the literature and will highlight the many issues that are often buried in other texts where the solution to materials challenges can be crucial in developing a new PV technology. The emphasis of the book will be on the range of thin film PV materials. Thin film PV is growing more rapidly that crystalline silicon and although only 10% of the current market could dominate in the longer term. This book will address the fundamental aspects of PV solar cell materials and give a comprehensive description of each of the major thin film materials either in research or in production. Particular attention will be given to the key materials drivers of solar conversion efficiency, long term stability, materials costs and materials sustainability. The book will be essential reading for materials scientists, energy technologists and all those involved in solid-state physics.
Publisher: Royal Society of Chemistry
ISBN: 1849733465
Category : Science
Languages : en
Pages : 357
Book Description
This book will provide an authoritative reference on the various aspects of materials science that will impact the next generation of photovoltaic (PV) module technology. The materials emphasis will bring a fresh perspective to the literature and will highlight the many issues that are often buried in other texts where the solution to materials challenges can be crucial in developing a new PV technology. The emphasis of the book will be on the range of thin film PV materials. Thin film PV is growing more rapidly that crystalline silicon and although only 10% of the current market could dominate in the longer term. This book will address the fundamental aspects of PV solar cell materials and give a comprehensive description of each of the major thin film materials either in research or in production. Particular attention will be given to the key materials drivers of solar conversion efficiency, long term stability, materials costs and materials sustainability. The book will be essential reading for materials scientists, energy technologists and all those involved in solid-state physics.
Handbook of Research on Solar Energy Systems and Technologies
Author: Anwar, Sohail
Publisher: IGI Global
ISBN: 146661997X
Category : Science
Languages : en
Pages : 615
Book Description
The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.
Publisher: IGI Global
ISBN: 146661997X
Category : Science
Languages : en
Pages : 615
Book Description
The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.
Metal Semiconductor Core-shell Nanostructures for Energy and Environmental Applications
Author: Raju Kumar Gupta
Publisher: Elsevier
ISBN: 0128124458
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications provides a concise, scholarly overview of current research into the characterization of metal semiconductor core-shell nanostructures; the book shows how their properties can be best used in energy and environmental applications, particularly for solar cell and catalysis application. Coverage is also given to the effect of metal nanoparticle for charge generation or charge separation. The book is a valuable resource for academic researchers working in the areas of nanotechnology, sustainable energy and chemical engineering, and is also of great use to engineers working in photovoltaic and pollution industries. - Includes a clear method for synthesis of core-shell nanomaterials - Explores how metal semiconductor core-shell nanostructures can be used to improve the efficiency of solar cells - Explains how the characteristics of metal semiconductor core-shell nanostructures make them particularly useful for sustainable energy and environmental applications
Publisher: Elsevier
ISBN: 0128124458
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications provides a concise, scholarly overview of current research into the characterization of metal semiconductor core-shell nanostructures; the book shows how their properties can be best used in energy and environmental applications, particularly for solar cell and catalysis application. Coverage is also given to the effect of metal nanoparticle for charge generation or charge separation. The book is a valuable resource for academic researchers working in the areas of nanotechnology, sustainable energy and chemical engineering, and is also of great use to engineers working in photovoltaic and pollution industries. - Includes a clear method for synthesis of core-shell nanomaterials - Explores how metal semiconductor core-shell nanostructures can be used to improve the efficiency of solar cells - Explains how the characteristics of metal semiconductor core-shell nanostructures make them particularly useful for sustainable energy and environmental applications
How Solar Energy Became Cheap
Author: Gregory F. Nemet
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.
Publisher: Routledge
ISBN: 0429643853
Category : Business & Economics
Languages : en
Pages : 261
Book Description
Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.