Author: Gorō Shimura
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Introduction to the Arithmetic Theory of Automorphic Functions
Author: Gorō Shimura
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Publisher: Princeton University Press
ISBN: 9780691080925
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Ergodic Theory and Semisimple Groups
Author: R.J. Zimmer
Publisher: Springer Science & Business Media
ISBN: 1468494880
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail.
Publisher: Springer Science & Business Media
ISBN: 1468494880
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail.
Group Cohomology and Algebraic Cycles
Author: Burt Totaro
Publisher: Cambridge University Press
ISBN: 113991605X
Category : Mathematics
Languages : en
Pages : 245
Book Description
Group cohomology reveals a deep relationship between algebra and topology, and its recent applications have provided important insights into the Hodge conjecture and algebraic geometry more broadly. This book presents a coherent suite of computational tools for the study of group cohomology and algebraic cycles. Early chapters synthesize background material from topology, algebraic geometry, and commutative algebra so readers do not have to form connections between the literatures on their own. Later chapters demonstrate Peter Symonds's influential proof of David Benson's regularity conjecture, offering several new variants and improvements. Complete with concrete examples and computations throughout, and a list of open problems for further study, this book will be valuable to graduate students and researchers in algebraic geometry and related fields.
Publisher: Cambridge University Press
ISBN: 113991605X
Category : Mathematics
Languages : en
Pages : 245
Book Description
Group cohomology reveals a deep relationship between algebra and topology, and its recent applications have provided important insights into the Hodge conjecture and algebraic geometry more broadly. This book presents a coherent suite of computational tools for the study of group cohomology and algebraic cycles. Early chapters synthesize background material from topology, algebraic geometry, and commutative algebra so readers do not have to form connections between the literatures on their own. Later chapters demonstrate Peter Symonds's influential proof of David Benson's regularity conjecture, offering several new variants and improvements. Complete with concrete examples and computations throughout, and a list of open problems for further study, this book will be valuable to graduate students and researchers in algebraic geometry and related fields.
Year Book and Register
Author: National Utility Poultry Society
Publisher:
ISBN:
Category : Poultry
Languages : en
Pages : 300
Book Description
Publisher:
ISBN:
Category : Poultry
Languages : en
Pages : 300
Book Description
A Dictionary of chemical solubilities
Author: Arthur Messinger Comey
Publisher:
ISBN:
Category :
Languages : en
Pages : 1186
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1186
Book Description
Electromagnetic Theory
Author: Oliver Heaviside
Publisher:
ISBN:
Category : Electric waves
Languages : en
Pages : 578
Book Description
Publisher:
ISBN:
Category : Electric waves
Languages : en
Pages : 578
Book Description
Živena. Časopis Pre Kultúrne a Ženské Záujmy. Orgán Spolku Živeny
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 252
Book Description
Annual Report of the Department of Factory Inspection of the State of Indiana
Author: Indiana. Dept. of Inspection
Publisher:
ISBN:
Category : Factory inspection
Languages : en
Pages : 346
Book Description
Publisher:
ISBN:
Category : Factory inspection
Languages : en
Pages : 346
Book Description
Proceedings of the General Meetings for Scientific Business of the Zoological Society of London
Author: Zoological Society of London
Publisher:
ISBN:
Category : Zoology
Languages : en
Pages : 796
Book Description
Publisher:
ISBN:
Category : Zoology
Languages : en
Pages : 796
Book Description
Harmonic Vector Fields
Author: Sorin Dragomir
Publisher: Elsevier
ISBN: 0124158269
Category : Computers
Languages : en
Pages : 529
Book Description
An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods
Publisher: Elsevier
ISBN: 0124158269
Category : Computers
Languages : en
Pages : 529
Book Description
An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods