Singular Integrals and Fourier Theory on Lipschitz Boundaries

Singular Integrals and Fourier Theory on Lipschitz Boundaries PDF Author: Tao Qian
Publisher: Springer
ISBN: 9811365008
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.

Singular Integrals and Fourier Theory on Lipschitz Boundaries

Singular Integrals and Fourier Theory on Lipschitz Boundaries PDF Author: Tao Qian
Publisher: Springer
ISBN: 9811365008
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.

Multidimensional Singular Integrals and Integral Equations

Multidimensional Singular Integrals and Integral Equations PDF Author: S. G. Mikhlin
Publisher: Elsevier
ISBN: 1483164497
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals; properties of the symbol, with particular reference to Fourier transform of a kernel and the symbol of a singular operator; singular integrals in Lp spaces; and singular integral equations. The differentiation of integrals with a weak singularity is also considered, along with the rule for the multiplication of the symbols in the general case. The final chapter describes several applications of multidimensional singular integral equations to boundary problems in mathematical physics. This book will be of interest to mathematicians and students of mathematics.

Singular Integral Operators, Quantitative Flatness, and Boundary Problems

Singular Integral Operators, Quantitative Flatness, and Boundary Problems PDF Author: Juan José Marín
Publisher: Springer Nature
ISBN: 3031082346
Category : Mathematics
Languages : en
Pages : 605

Get Book Here

Book Description
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems – as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis – will find this text to be a valuable addition to the mathematical literature.

Clifford Wavelets, Singular Integrals, and Hardy Spaces

Clifford Wavelets, Singular Integrals, and Hardy Spaces PDF Author: Marius Mitrea
Publisher: Springer
ISBN: 3540483799
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
The book discusses the extensions of basic Fourier Analysis techniques to the Clifford algebra framework. Topics covered: construction of Clifford-valued wavelets, Calderon-Zygmund theory for Clifford valued singular integral operators on Lipschitz hyper-surfaces, Hardy spaces of Clifford monogenic functions on Lipschitz domains. Results are applied to potential theory and elliptic boundary value problems on non-smooth domains. The book is self-contained to a large extent and well-suited for graduate students and researchers in the areas of wavelet theory, Harmonic and Clifford Analysis. It will also interest the specialists concerned with the applications of the Clifford algebra machinery to Mathematical Physics.

Strongly Elliptic Systems and Boundary Integral Equations

Strongly Elliptic Systems and Boundary Integral Equations PDF Author: William Charles Hector McLean
Publisher: Cambridge University Press
ISBN: 9780521663755
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.

Multi-Layer Potentials and Boundary Problems

Multi-Layer Potentials and Boundary Problems PDF Author: Irina Mitrea
Publisher: Springer
ISBN: 3642326668
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.

The Laplace Equation

The Laplace Equation PDF Author: Dagmar Medková
Publisher: Springer
ISBN: 3319743074
Category : Mathematics
Languages : en
Pages : 669

Get Book Here

Book Description
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.

Clifford Analysis and Its Applications

Clifford Analysis and Its Applications PDF Author: F. Brackx
Publisher: Springer Science & Business Media
ISBN: 9401008620
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.

Geometric Harmonic Analysis V

Geometric Harmonic Analysis V PDF Author: Dorina Mitrea
Publisher: Springer Nature
ISBN: 3031315618
Category : Mathematics
Languages : en
Pages : 1006

Get Book Here

Book Description
This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations. The ultimate goal in Volume V is to prove well-posedness and Fredholm solvability results concerning boundary value problems for elliptic second-order homogeneous constant (complex) coefficient systems, and domains of a rather general geometric nature. The formulation of the boundary value problems treated here is optimal from a multitude of points of view, having to do with geometry, functional analysis (through the consideration of a large variety of scales of function spaces), topology, and partial differential equations.

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF Author: Barbara S Bertram
Publisher: CRC Press
ISBN: 9781420036039
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.