Single-electron Transport in Focused Electron Beam Induced Deposition (FEBID)-based Nanostructures

Single-electron Transport in Focused Electron Beam Induced Deposition (FEBID)-based Nanostructures PDF Author: Giorgia Di Prima
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Single-electron Transport in Focused Electron Beam Induced Deposition (FEBID)-based Nanostructures

Single-electron Transport in Focused Electron Beam Induced Deposition (FEBID)-based Nanostructures PDF Author: Giorgia Di Prima
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition

Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition PDF Author: Rosa Cordoba Castillo
Publisher:
ISBN: 9783319020822
Category :
Languages : en
Pages : 164

Get Book Here

Book Description


Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition

Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition PDF Author: Rosa Córdoba Castillo
Publisher: Springer Science & Business Media
ISBN: 3319020811
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
This thesis constitutes a detailed study of functional nanostructures (ferromagnetic, superconducting, metallic and semiconducting) fabricated by focused electron/ion beam induced deposition techniques. The nanostructures were grown using different precursor materials such as Co2(CO)8, Fe2(CO)9, W(CO)6, (CH3)3Pt(CpCH3) and were characterized by a wide range of techniques. This work reports results obtained for the morphology, the microstructure, the composition, the electrical transport mechanism, magnetic and superconducting properties of nanostructures. The results offers exciting prospects in a wide range of applications in nanotechnology and condensed matter physics.

Electron Transport Through Chemically-derived Nanostructures

Electron Transport Through Chemically-derived Nanostructures PDF Author: Andrew Kean Leong Lim
Publisher:
ISBN:
Category :
Languages : en
Pages : 326

Get Book Here

Book Description


Advanced Purification and Direct-write 3D Nanoprinting Via Focused Electron Beam Induced Deposition

Advanced Purification and Direct-write 3D Nanoprinting Via Focused Electron Beam Induced Deposition PDF Author: Brett Bloxton Lewis
Publisher:
ISBN:
Category : Electron beams
Languages : en
Pages : 141

Get Book Here

Book Description
This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization. Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals. Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained a niche technique for nanoscale fabrication and prototyping. The Achilles heel of FEBID is that, with few exceptions, the resultant structures are riddled with impurities. Also, the use of FEBID as a nanoscale 3D printing tool is limited and has historically been approached from a trial and error point of view To address these issues, we have developed an advanced low-temperature purification method through a post process involving the electron stimulated reaction of O2 and carbon contaminates. This method is discussed in Chapter 1. We have investigated parameters involved in three dimensional FEBID, demonstrating control over those parameters to produce predicable shapes with high precision and complexity as described in Chapter 2. It is non-trivial to purify simultaneous during 3D printing, and so we have studied and developed a method to accomplish that using an in situ pulsed laser thermal anneal. Chapter 3 demonstrates this fully in situ 3D purification process. Finally, for emerging applications it will be important to know the mechanical properties of intricate structures created through FEBID. To this end, we have developed a method for the mechanical characterization of 3D nanostructures fabricated using FEBID. The mechanical characterization process, tools, and results are detailed in Chapter 4.

Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams PDF Author: Ivo Utke
Publisher: Oxford University Press
ISBN: 0199920990
Category : Technology & Engineering
Languages : en
Pages : 830

Get Book Here

Book Description
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.

Single Electron Transport in Parallel Coupled Quantum Dot Nanostructures

Single Electron Transport in Parallel Coupled Quantum Dot Nanostructures PDF Author: Aram Sarkis Adourian
Publisher:
ISBN:
Category : Electron transport
Languages : en
Pages : 324

Get Book Here

Book Description


Low-Energy Electrons

Low-Energy Electrons PDF Author: Oddur Ingólfsson
Publisher: CRC Press
ISBN: 0429602766
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Low-energy electrons are ubiquitous in nature and play an important role in natural phenomena as well as many potential and current industrial processes. Authored by 16 active researchers, this book describes the fundamental characteristics of low-energy electron–molecule interactions and their role in different fields of science and technology, including plasma processing, nanotechnology, and health care, as well as astro- and atmospheric physics and chemistry. The book is packed with illustrative examples, from both fundamental and application sides, features about 130 figures, and lists over 800 references. It may serve as an advanced graduate-level study course material where selected chapters can be used either individually or in combination as a basis to highlight and study specific aspects of low-energy electron–molecule interactions. It is also directed at researchers in the fields of plasma physics, nanotechnology, and radiation damage to biologically relevant material (such as in cancer therapy), especially those with an interest in high-energy-radiation-induced processes, from both an experimental and a theoretical point of view.

Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams PDF Author: Ivo Utke
Publisher: Oxford University Press
ISBN: 0190453621
Category : Technology & Engineering
Languages : en
Pages : 840

Get Book Here

Book Description
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.

Nanofabrication

Nanofabrication PDF Author: José María de Teresa
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0

Get Book Here

Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.