Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods PDF Author: Dirk P. Kroese
Publisher: John Wiley & Sons
ISBN: 1118014952
Category : Mathematics
Languages : en
Pages : 627

Get Book Here

Book Description
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods PDF Author: Dirk P. Kroese
Publisher: John Wiley & Sons
ISBN: 1118014952
Category : Mathematics
Languages : en
Pages : 627

Get Book Here

Book Description
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Monte Carlo Statistical Methods

Monte Carlo Statistical Methods PDF Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1475741456
Category : Mathematics
Languages : en
Pages : 670

Get Book Here

Book Description
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R PDF Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1441915753
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods PDF Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 147572960X
Category : Computers
Languages : en
Pages : 252

Get Book Here

Book Description
Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.

Simulation and the Monte Carlo Method, 2nd Edition Set

Simulation and the Monte Carlo Method, 2nd Edition Set PDF Author: Reuven Y. Rubinstein
Publisher: Wiley-Interscience
ISBN: 9780470345245
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This set contains the text Simulation and the Monte Carlo Method, Second Edition 9780470177945 and the Student Solutions Manual to Accompany Simulation and the Monte Carlo Method, Second Edition 9780470258798.

Markov Chain Monte Carlo

Markov Chain Monte Carlo PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.

Explorations in Monte Carlo Methods

Explorations in Monte Carlo Methods PDF Author: Ronald W. Shonkwiler
Publisher: Springer Science & Business Media
ISBN: 0387878378
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603

Get Book Here

Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Monte Carlo Simulation with Applications to Finance

Monte Carlo Simulation with Applications to Finance PDF Author: Hui Wang
Publisher: CRC Press
ISBN: 1439858241
Category : Business & Economics
Languages : en
Pages : 294

Get Book Here

Book Description
Developed from the author’s course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry. The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes. Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB® coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.

Introduction to Scientific Programming and Simulation Using R

Introduction to Scientific Programming and Simulation Using R PDF Author: Owen Jones
Publisher: CRC Press
ISBN: 1466570016
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
Learn How to Program Stochastic ModelsHighly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear,