Simple Statistical Methods for Software Engineering

Simple Statistical Methods for Software Engineering PDF Author: C. Ravindranath Pandian
Publisher: CRC Press
ISBN: 143981662X
Category : Computers
Languages : en
Pages : 373

Get Book Here

Book Description
Although there are countless books on statistics, few are dedicated to the application of statistical methods to software engineering. Simple Statistical Methods for Software Engineering: Data and Patterns fills that void. Instead of delving into overly complex statistics, the book details simpler solutions that are just as effective and connect wi

Statistical Software Engineering

Statistical Software Engineering PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176085
Category : Computers
Languages : en
Pages : 83

Get Book Here

Book Description
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.

Statistical Methods in Water Resources

Statistical Methods in Water Resources PDF Author: D.R. Helsel
Publisher: Elsevier
ISBN: 0080875084
Category : Science
Languages : en
Pages : 539

Get Book Here

Book Description
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

Statistical Methods in Software Engineering

Statistical Methods in Software Engineering PDF Author: Nozer D. Singpurwalla
Publisher: Springer Science & Business Media
ISBN: 1461205654
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.

Contemporary Empirical Methods in Software Engineering

Contemporary Empirical Methods in Software Engineering PDF Author: Michael Felderer
Publisher: Springer Nature
ISBN: 3030324893
Category : Computers
Languages : en
Pages : 520

Get Book Here

Book Description
This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Applied Statistics for Software Managers

Applied Statistics for Software Managers PDF Author: Katrina Maxwell
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
Applied Statistics for Software Managers is the first complete guide to using statistical techniques to solve specific software development and maintenance problems. You don't need a mathematical background; Katrina Maxwell presents an easy-to-follow methodology and detailed case studies that show you exactly how to assess productivity, time to market, development costs, maintenance cost drivers, and more.

Measuring the Software Process

Measuring the Software Process PDF Author: William A. Florac
Publisher: Addison-Wesley Professional
ISBN: 0768684951
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
"While it is usually helpful to launch improvement programs, many such programs soon get bogged down in detail. They either address the wrong problems, or they keep beating on the same solutions, wondering why things don't improve. This is when you need an objective way to look at the problems. This is the time to get some data." Watts S. Humphrey, from the Foreword This book, drawing on work done at the Software Engineering Institute and other organizations, shows how to use measurements to manage and improve software processes. The authors explain specifically how quality characteristics of software products and processes can be quantified, plotted, and analyzed so the performance of software development activities can be predicted, controlled, and guided to achieve both business and technical goals. The measurement methods presented, based on the principles of statistical quality control, are illuminated by application examples taken from industry. Although many of the methods discussed are applicable to individual projects, the book's primary focus is on the steps software development organizations can take toward broad-reaching, long-term success. The book particularly addresses the needs of software managers and practitioners who have already set up some kind of basic measurement process and are ready to take the next step by collecting and analyzing software data as a basis for making process decisions and predicting process performance. Highlights of the book include: Insight into developing a clear framework for measuring process behavior Discussions of process performance, stability, compliance, capability, and improvement Explanations of what you want to measure (and why) and instructions on how to collect your data Step-by-step guidance on how to get started using statistical process control If you have responsibilities for product quality or process performance and you are ready to use measurements to manage, control, and predict your software processes, this book will be an invaluable resource.

Statistical Procedures for the Medical Device Industry

Statistical Procedures for the Medical Device Industry PDF Author: Wayne A. Taylor
Publisher:
ISBN: 9780963512291
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Statistics in Engineering

Statistics in Engineering PDF Author: Andrew Metcalfe
Publisher: CRC Press
ISBN: 1439895481
Category : Mathematics
Languages : en
Pages : 811

Get Book Here

Book Description
Engineers are expected to design structures and machines that can operate in challenging and volatile environments, while allowing for variation in materials and noise in measurements and signals. Statistics in Engineering, Second Edition: With Examples in MATLAB and R covers the fundamentals of probability and statistics and explains how to use these basic techniques to estimate and model random variation in the context of engineering analysis and design in all types of environments. The first eight chapters cover probability and probability distributions, graphical displays of data and descriptive statistics, combinations of random variables and propagation of error, statistical inference, bivariate distributions and correlation, linear regression on a single predictor variable, and the measurement error model. This leads to chapters including multiple regression; comparisons of several means and split-plot designs together with analysis of variance; probability models; and sampling strategies. Distinctive features include: All examples based on work in industry, consulting to industry, and research for industry Examples and case studies include all engineering disciplines Emphasis on probabilistic modeling including decision trees, Markov chains and processes, and structure functions Intuitive explanations are followed by succinct mathematical justifications Emphasis on random number generation that is used for stochastic simulations of engineering systems, demonstration of key concepts, and implementation of bootstrap methods for inference Use of MATLAB and the open source software R, both of which have an extensive range of statistical functions for standard analyses and also enable programing of specific applications Use of multiple regression for times series models and analysis of factorial and central composite designs Inclusion of topics such as Weibull analysis of failure times and split-plot designs that are commonly used in industry but are not usually included in introductory textbooks Experiments designed to show fundamental concepts that have been tested with large classes working in small groups Website with additional materials that is regularly updated Andrew Metcalfe, David Green, Andrew Smith, and Jonathan Tuke have taught probability and statistics to students of engineering at the University of Adelaide for many years and have substantial industry experience. Their current research includes applications to water resources engineering, mining, and telecommunications. Mahayaudin Mansor worked in banking and insurance before teaching statistics and business mathematics at the Universiti Tun Abdul Razak Malaysia and is currently a researcher specializing in data analytics and quantitative research in the Health Economics and Social Policy Research Group at the Australian Centre for Precision Health, University of South Australia. Tony Greenfield, formerly Head of Process Computing and Statistics at the British Iron and Steel Research Association, is a statistical consultant. He has been awarded the Chambers Medal for outstanding services to the Royal Statistical Society; the George Box Medal by the European Network for Business and Industrial Statistics for Outstanding Contributions to Industrial Statistics; and the William G. Hunter Award by the American Society for Quality.

Federal Statistics, Multiple Data Sources, and Privacy Protection

Federal Statistics, Multiple Data Sources, and Privacy Protection PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309465370
Category : Social Science
Languages : en
Pages : 195

Get Book Here

Book Description
The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.