Author: T.L. Simpson
Publisher: Springer Science & Business Media
ISBN: 1461259444
Category : Science
Languages : en
Pages : 589
Book Description
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Silicon and Siliceous Structures in Biological Systems
Author: T.L. Simpson
Publisher: Springer Science & Business Media
ISBN: 1461259444
Category : Science
Languages : en
Pages : 589
Book Description
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Publisher: Springer Science & Business Media
ISBN: 1461259444
Category : Science
Languages : en
Pages : 589
Book Description
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Silicon and Siliceous Structures in Biological Systems
Author: Tracy L. Simpson
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
Biochemistry of the Essential Ultratrace Elements
Author: Earl Frieden
Publisher: Springer Science & Business Media
ISBN: 1468447750
Category : Science
Languages : en
Pages : 433
Book Description
The remarkable development of molecular biology has had its counterpart in an impressive growth of a segment of biology that might be described as atomic biology. The past several decades have witnessed an explosive growth in our knowledge of the many elements that are essential for life and maintenance of plants and animals. These essential elements include the bulk elements (hydro gen, carbon, nitrogen, oxygen, and sulfur), the macrominerals (sodium, potas sium, calcium, magnesium, chloride, and phosphorus), and the trace elements. This last group includes the ultra trace elements and iron, zinc, and copper. Only the ultratrace elements are featured in this book. Iron has attracted so much research that two volumes are devoted to this metal-The Biochemistry of Non-Heme Iron by A. Bezkoravainy, Plenum Press, 1980, and The Biochemistry of Heme Iron (in preparation). Copper and zinc are also represented by a separate volume in this series. The present volume begins with a discussion of essentiality as applied to the elements and a survey of the entire spectrum of possible required elements.
Publisher: Springer Science & Business Media
ISBN: 1468447750
Category : Science
Languages : en
Pages : 433
Book Description
The remarkable development of molecular biology has had its counterpart in an impressive growth of a segment of biology that might be described as atomic biology. The past several decades have witnessed an explosive growth in our knowledge of the many elements that are essential for life and maintenance of plants and animals. These essential elements include the bulk elements (hydro gen, carbon, nitrogen, oxygen, and sulfur), the macrominerals (sodium, potas sium, calcium, magnesium, chloride, and phosphorus), and the trace elements. This last group includes the ultra trace elements and iron, zinc, and copper. Only the ultratrace elements are featured in this book. Iron has attracted so much research that two volumes are devoted to this metal-The Biochemistry of Non-Heme Iron by A. Bezkoravainy, Plenum Press, 1980, and The Biochemistry of Heme Iron (in preparation). Copper and zinc are also represented by a separate volume in this series. The present volume begins with a discussion of essentiality as applied to the elements and a survey of the entire spectrum of possible required elements.
Author: Humphrey John Moule Bowen
Publisher: Royal Society of Chemistry
ISBN: 0851867758
Category :
Languages : en
Pages : 156
Book Description
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Publisher: Royal Society of Chemistry
ISBN: 0851867758
Category :
Languages : en
Pages : 156
Book Description
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Diatom Morphogenesis
Author: Vadim V. Annenkov
Publisher: John Wiley & Sons
ISBN: 1119487951
Category : Science
Languages : en
Pages : 452
Book Description
DIATOM MORPHOGENESIS A unique book presenting the range of silica structures formed by diatoms, theories and hypotheses of how they are made, and applications to nanotechnology by use or imitation of diatom morphogenesis. There are up to 200,000 species of diatoms, each species of these algal cells bearing an ornate, amorphous silica glass shell. The silica is structured at 7 orders of magnitude size range and is thus the most complex multiscalar solid structure known. Recent research is beginning to unravel how a single cell marshals chemical, physical, biochemical, genetic, and cytoskeletal processes to produce these single-cell marvels. The field of diatom nanotechnology is advancing as this understanding matures. Diatoms have been actively studied over the recent 10-20 years with various modern equipment, experimental and computer simulation approaches, including molecular biology, fluorescence-based methods, electron, confocal, and AFM microscopy. This has resulted in a huge amount of information but the key stages of their silica morphogenesis are still not clear. This is the time to reconsider and consolidate the work performed so far and to understand how we can go ahead. The main objective of this book is to describe the actual situation in the science of diatom morphogenesis, to specify the most important unresolved questions, and to present the corresponding hypotheses. The following areas are discussed: A tutorial chapter, with a glossary for newcomers to the field, who are often from outside of biology, let alone phycology; Diatom Morphogenesis: general issues, including symmetry and size issues; Diatom Morphogenesis: simulation, including analytical and numerical methods for description of the diatom valve shape and pore structure; Diatom Morphogenesis: physiology, biochemistry, and applications, including the relationship between taxonomy and physiology, biosilicification hypotheses, and ideas about applications of diatoms. Audience Researchers, scientists, and graduate students in the fields of phycology, general biology, marine sciences, the chemistry of silica, materials science, and ecology.
Publisher: John Wiley & Sons
ISBN: 1119487951
Category : Science
Languages : en
Pages : 452
Book Description
DIATOM MORPHOGENESIS A unique book presenting the range of silica structures formed by diatoms, theories and hypotheses of how they are made, and applications to nanotechnology by use or imitation of diatom morphogenesis. There are up to 200,000 species of diatoms, each species of these algal cells bearing an ornate, amorphous silica glass shell. The silica is structured at 7 orders of magnitude size range and is thus the most complex multiscalar solid structure known. Recent research is beginning to unravel how a single cell marshals chemical, physical, biochemical, genetic, and cytoskeletal processes to produce these single-cell marvels. The field of diatom nanotechnology is advancing as this understanding matures. Diatoms have been actively studied over the recent 10-20 years with various modern equipment, experimental and computer simulation approaches, including molecular biology, fluorescence-based methods, electron, confocal, and AFM microscopy. This has resulted in a huge amount of information but the key stages of their silica morphogenesis are still not clear. This is the time to reconsider and consolidate the work performed so far and to understand how we can go ahead. The main objective of this book is to describe the actual situation in the science of diatom morphogenesis, to specify the most important unresolved questions, and to present the corresponding hypotheses. The following areas are discussed: A tutorial chapter, with a glossary for newcomers to the field, who are often from outside of biology, let alone phycology; Diatom Morphogenesis: general issues, including symmetry and size issues; Diatom Morphogenesis: simulation, including analytical and numerical methods for description of the diatom valve shape and pore structure; Diatom Morphogenesis: physiology, biochemistry, and applications, including the relationship between taxonomy and physiology, biosilicification hypotheses, and ideas about applications of diatoms. Audience Researchers, scientists, and graduate students in the fields of phycology, general biology, marine sciences, the chemistry of silica, materials science, and ecology.
Biomineralization
Author: Edmund Bäuerlein
Publisher: John Wiley & Sons
ISBN: 3527604618
Category : Science
Languages : en
Pages : 361
Book Description
Now over 50 % new contents. Incorporating the surprisingly rapid advances in this field since the publication of the successful first edition, this intensively updated and expanded new edition covers all the background as well as the latest results. Now organized according to the main biominerals, the book reflects the increasingly important biochemical aspects and medicinal applications, with four new chapters on biomineralization in mammals, including humans. The whole is rounded off with an entire chapter dedicated to modern methods, especially physical ones that have advanced the field over the last five years. The international team of renowned authors, under the direction of a leading expert in the field, provide first-hand research results from their own relevant fields. The result is an interdisciplinary must-have account, designed for a broad community of researchers.
Publisher: John Wiley & Sons
ISBN: 3527604618
Category : Science
Languages : en
Pages : 361
Book Description
Now over 50 % new contents. Incorporating the surprisingly rapid advances in this field since the publication of the successful first edition, this intensively updated and expanded new edition covers all the background as well as the latest results. Now organized according to the main biominerals, the book reflects the increasingly important biochemical aspects and medicinal applications, with four new chapters on biomineralization in mammals, including humans. The whole is rounded off with an entire chapter dedicated to modern methods, especially physical ones that have advanced the field over the last five years. The international team of renowned authors, under the direction of a leading expert in the field, provide first-hand research results from their own relevant fields. The result is an interdisciplinary must-have account, designed for a broad community of researchers.
The Protistan Cell Surface
Author: Richard Wetherbee
Publisher: Springer Science & Business Media
ISBN: 3709193788
Category : Science
Languages : en
Pages : 297
Book Description
Protists represent an immensely diverse group of organisms comprised of algae, fungi and protozoa. The nature of protistan cell surface is as diverse as the terminology that has evolved to describe the various surface components. This terminology is defined and discussed in the opening of this book. The remaining contributions provide an up-to-date synopsis of structure, development and function of protistan cell surfaces, including their role in taxonomy and systematics.
Publisher: Springer Science & Business Media
ISBN: 3709193788
Category : Science
Languages : en
Pages : 297
Book Description
Protists represent an immensely diverse group of organisms comprised of algae, fungi and protozoa. The nature of protistan cell surface is as diverse as the terminology that has evolved to describe the various surface components. This terminology is defined and discussed in the opening of this book. The remaining contributions provide an up-to-date synopsis of structure, development and function of protistan cell surfaces, including their role in taxonomy and systematics.
Biomineralization
Author: Kenneth Simkiss
Publisher: Elsevier
ISBN: 0080925847
Category : Science
Languages : en
Pages : 352
Book Description
Biomineralization is the process that produces the skeletons, shells, and teeth of most animals. It is also involved in magnetic orientation, gravity detection, and the storing of ions. This book compares a diverse number of systems, including mineral deposition of invertebrates, vertebrates, algae, and microorganisms. Emphasis is placed on the systems responsible for converting ions to minerals and the mechanisms and control of mineral form.
Publisher: Elsevier
ISBN: 0080925847
Category : Science
Languages : en
Pages : 352
Book Description
Biomineralization is the process that produces the skeletons, shells, and teeth of most animals. It is also involved in magnetic orientation, gravity detection, and the storing of ions. This book compares a diverse number of systems, including mineral deposition of invertebrates, vertebrates, algae, and microorganisms. Emphasis is placed on the systems responsible for converting ions to minerals and the mechanisms and control of mineral form.
Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals
Author: Rex E. Crick
Publisher: Springer Science & Business Media
ISBN: 1475761147
Category : Science
Languages : en
Pages : 532
Book Description
The Fifth International Biomineralization Symposium was held in May 1986 at The University of Texas at Arlington, Arlington, Texas. The chosen theme was the origin, evolution and modern aspects of biomineralization in plants and animals. Thus, the symposium was designed to bring together experts in ocean and atmospheric chemistry, geochemistry, paleontology, biology, medicine and related fields to share accumulated knowledge and to broaden research horizons. The contents of this volume reflect the diversified interests and views of contributors from these fields. Topics range from contrasting views of the origin of ocean chemistry, the cause or causes for the biomineralization among plants and animals, the evolution of style and structure of biomineralization, and the role of inorganic and organic compounds in biomineraliza tion. It was clear from those gathered in Arlington that the efforts of all researchers in any aspect of biomineralization can be strengthened and extended by greater exposure to the work of others in allied fields. At the time of this printing, several collaborative efforts have grown from interest and contacts developed during the symposium. Rex E. Crick viii ACKNOWLEDGEMENTS The symposium would not have occurred with the financial support of The Organized Research Fund of The University of Texas at Arlington and The Sea Grant Program administered by Texas A & M University. The staff of the Department of Geology of The University of Texas at Arlington were largely responsible for providing a pleasant atmosphere for learning.
Publisher: Springer Science & Business Media
ISBN: 1475761147
Category : Science
Languages : en
Pages : 532
Book Description
The Fifth International Biomineralization Symposium was held in May 1986 at The University of Texas at Arlington, Arlington, Texas. The chosen theme was the origin, evolution and modern aspects of biomineralization in plants and animals. Thus, the symposium was designed to bring together experts in ocean and atmospheric chemistry, geochemistry, paleontology, biology, medicine and related fields to share accumulated knowledge and to broaden research horizons. The contents of this volume reflect the diversified interests and views of contributors from these fields. Topics range from contrasting views of the origin of ocean chemistry, the cause or causes for the biomineralization among plants and animals, the evolution of style and structure of biomineralization, and the role of inorganic and organic compounds in biomineraliza tion. It was clear from those gathered in Arlington that the efforts of all researchers in any aspect of biomineralization can be strengthened and extended by greater exposure to the work of others in allied fields. At the time of this printing, several collaborative efforts have grown from interest and contacts developed during the symposium. Rex E. Crick viii ACKNOWLEDGEMENTS The symposium would not have occurred with the financial support of The Organized Research Fund of The University of Texas at Arlington and The Sea Grant Program administered by Texas A & M University. The staff of the Department of Geology of The University of Texas at Arlington were largely responsible for providing a pleasant atmosphere for learning.
Silicon Biochemistry
Author: David Evered
Publisher: John Wiley & Sons
ISBN: 0470513330
Category : Science
Languages : en
Pages : 272
Book Description
The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.
Publisher: John Wiley & Sons
ISBN: 0470513330
Category : Science
Languages : en
Pages : 272
Book Description
The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.