Shape, Contour and Grouping in Computer Vision

Shape, Contour and Grouping in Computer Vision PDF Author: David A. Forsyth
Publisher: Springer
ISBN: 3540468056
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.

Shape, Contour and Grouping in Computer Vision

Shape, Contour and Grouping in Computer Vision PDF Author: David A. Forsyth
Publisher: Springer
ISBN: 3540468056
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.

Shape Perception in Human and Computer Vision

Shape Perception in Human and Computer Vision PDF Author: Sven J. Dickinson
Publisher: Springer Science & Business Media
ISBN: 144715195X
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a specific paradigm; discusses topics on contours, shape hierarchies, shape grammars, shape priors, and 3D shape inference; reviews issues relating to surfaces, invariants, parts, multiple views, learning, simplicity, shape constancy and shape illusions; addresses concepts from the historically separate disciplines of computer vision and human vision using the same “language” and methods.

Computer Vision and Shape Recognition

Computer Vision and Shape Recognition PDF Author: Adam Krzyzak
Publisher: World Scientific
ISBN: 9789971508623
Category : Computers
Languages : en
Pages : 474

Get Book Here

Book Description
This is an up-to-date volume of selected and expanded papers originating from Vision Interface 88, a conference held in Edmonton, Canada. A broad range of topics are covered-from image processing to hardware design. They include robot vision, biomedical imaging, remote sensing and parallel processing, shape recognition and features, computational methods in vision, and three dimensional vision and application.

A Computational Framework for Segmentation and Grouping

A Computational Framework for Segmentation and Grouping PDF Author: G. Medioni
Publisher: Elsevier
ISBN: 0080529488
Category : Computers
Languages : en
Pages : 283

Get Book Here

Book Description
This book represents a summary of the research we have been conducting since the early 1990s, and describes a conceptual framework which addresses some current shortcomings, and proposes a unified approach for a broad class of problems. While the framework is defined, our research continues, and some of the elements presented here will no doubt evolve in the coming years.It is organized in eight chapters. In the Introduction chapter, we present the definition of the problems, and give an overview of the proposed approach and its implementation. In particular, we illustrate the limitations of the 2.5D sketch, and motivate the use of a representation in terms of layers instead.In chapter 2, we review some of the relevant research in the literature. The discussion focuses on general computational approaches for early vision, and individual methods are only cited as references. Chapter 3 is the fundamental chapter, as it presents the elements of our salient feature inference engine, and their interaction. It introduced tensors as a way to represent information, tensor fields as a way to encode both constraints and results, and tensor voting as the communication scheme. Chapter 4 describes the feature extraction steps, given the computations performed by the engine described earlier. In chapter 5, we apply the generic framework to the inference of regions, curves, and junctions in 2-D. The input may take the form of 2-D points, with or without orientation. We illustrate the approach on a number of examples, both basic and advanced. In chapter 6, we apply the framework to the inference of surfaces, curves and junctions in 3-D. Here, the input consists of a set of 3-D points, with or without as associated normal or tangent direction. We show a number of illustrative examples, and also point to some applications of the approach. In chapter 7, we use our framework to tackle 3 early vision problems, shape from shading, stereo matching, and optical flow computation. In chapter 8, we conclude this book with a few remarks, and discuss future research directions.We include 3 appendices, one on Tensor Calculus, one dealing with proofs and details of the Feature Extraction process, and one dealing with the companion software packages.

Computer Vision - ECCV 2002

Computer Vision - ECCV 2002 PDF Author: Anders Heyden
Publisher: Springer
ISBN: 3540479775
Category : Computers
Languages : en
Pages : 935

Get Book Here

Book Description
Premiering in 1990 in Antibes, France, the European Conference on Computer Vision, ECCV, has been held biennially at venues all around Europe. These conferences have been very successful, making ECCV a major event to the computer vision community. ECCV 2002 was the seventh in the series. The privilege of organizing it was shared by three universities: The IT University of Copenhagen, the University of Copenhagen, and Lund University, with the conference venue in Copenhagen. These universities lie ̈ geographically close in the vivid Oresund region, which lies partly in Denmark and partly in Sweden, with the newly built bridge (opened summer 2000) crossing the sound that formerly divided the countries. We are very happy to report that this year’s conference attracted more papers than ever before, with around 600 submissions. Still, together with the conference board, we decided to keep the tradition of holding ECCV as a single track conference. Each paper was anonymously refereed by three different reviewers. For the nal selection, for the rst time for ECCV, a system with area chairs was used. These met with the program chairsinLundfortwodaysinFebruary2002toselectwhatbecame45oralpresentations and 181 posters.Also at this meeting the selection was made without knowledge of the authors’identity.

Computer Vision -- ECCV 2006

Computer Vision -- ECCV 2006 PDF Author: Aleš Leonardis
Publisher: Springer
ISBN: 3540338357
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
The four-volume set comprising LNCS volumes 3951/3952/3953/3954 constitutes the refereed proceedings of the 9th European Conference on Computer Vision, ECCV 2006, held in Graz, Austria, in May 2006. The 192 revised papers presented were carefully reviewed and selected from a total of 811 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, statistical models and visual learning, 3D reconstruction and multi-view geometry, energy minimization, tracking and motion, segmentation, shape from X, visual tracking, face detection and recognition, illumination and reflectance modeling, and low-level vision, segmentation and grouping.

Computational Symmetry in Computer Vision and Computer Graphics

Computational Symmetry in Computer Vision and Computer Graphics PDF Author: Yanxi Liu
Publisher: Now Publishers Inc
ISBN: 1601983646
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago by the first author, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. The recent resurging interests in computational symmetry for computer vision and computer graphics applications have shown promising results. Recognizing the fundamental relevance and potential power that computational symmetry affords, we offer this survey to the computer vision and computer graphics communities. This survey provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.

From Fragments to Objects

From Fragments to Objects PDF Author: Thomas F. Shipley
Publisher: Elsevier
ISBN: 9780444505064
Category : Medical
Languages : en
Pages : 634

Get Book Here

Book Description
"This book addresses the problem of how the human visual system organizes inputs that are fragmented in space and time into coherent, stable perceptual units - objects. In doing so it addresses the following questions: what kinds of segmentation and grouping abilities exist in human perceivers? What information and computational processes achieve segmentation and grouping? What are the psychological consequences of perceiving whole objects?" "From Fragments to Objects: Segmentation and Grouping in Vision takes a comprehensive cognitive science approach to object perception, brings together separate lines of research in object perception in one volume, gives an integrated and up-to-date review of theory and empirical research and offers directions for future study."--Jacket.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision PDF Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Shape Reconstruction from Apparent Contours

Shape Reconstruction from Apparent Contours PDF Author: Giovanni Bellettini
Publisher: Springer
ISBN: 3662451913
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.