Settling of Metal Droplets Through a Magma Ocean and Metal Plume Conduits During Core Formation

Settling of Metal Droplets Through a Magma Ocean and Metal Plume Conduits During Core Formation PDF Author: Danielle Brand
Publisher:
ISBN:
Category :
Languages : en
Pages : 59

Get Book Here

Book Description
The gravitational settling dynamics of molten iron droplets through silicate material is an important process during the early impact history of the Earth where settling may have occurred within magma oceans or within metal plume conduits descending rapidly to form the metallic cores in terrestrial bodies. Implications for equilibration of liquid metal in the silicate mantle are key in aiding our understanding of the thermo-chemical evolution of Earth. To simultaneously meet geochemical constraints for rapid core formation as well as siderophile trace element distribution throughout the upper mantle, an emulsion of iron droplets or an emulsion metal plume may be important. Previous experiments have shown that descending metal silicate plumes entrain magma ocean material in trailing conduits that travel to the core-mantle boundary. It has also been shown that the style of metal emulsions will descend through these conduits in two stages, as a coalesced group within the plume head and later settling through the conduit column. However, the nature of iron settling through a magma ocean and within conduits is only understood in a rudimentary way. Here, I consider physical fluid models which study the settling of liquid iron droplets through silicate melts using liquid gallium emulsions and glucose solutions. I test the effect of several physical properties including the metal volumetric ratio, density difference, fluid viscosity, metal droplet diameter, and liquid versus solid metal spheres. Three stages are observed during gravitational settling. Regime 1 reveals rapid sinking of liquid metal droplets and entrainment of low-density (light element) fluids into a metal pond and into the core itself, regime 2 is characterized by upward migration of entrained fluid and regime 3 couples slow compaction of metal droplets at the base with final segregation of residual glucose solution. Results show that high volumetric ratios and low viscosity ratios of metal to magmas will have faster sinking velocities and metal pond or core formation times. I find that increased metal volumetric ratio and liquid (versus solid) metal spheres demonstrates more entrainment of magma into a metal pond or into the core. Higher levels of entrainment predicts the presence of light elements in the core during its formation and suggests “bottom-up” migration of light elements and metal-silicate segregation at high pressures during post core forming events. Upward migration of light elements will leave behind higher bulk density metals that initiate overturn in the outer core and can assist in powering the geodynamo. Finally, the settling process of emulsion metal droplets through magma oceans, plume conduits, and entrainment into the core provide a large surface areas and longer residence time for metal-silicate equilibration to address the excess siderophile observation while still descending rapidly enough to form the Earth's core in 30 My. I observe a metal sediment layer that forms above the metallic core after settling. If this sediment layer is stable, it may be entrained in upwelling mantle plumes over the Earth’s history and contribute towards mixing of siderophile elements with mantle minerals.

Settling of Metal Droplets Through a Magma Ocean and Metal Plume Conduits During Core Formation

Settling of Metal Droplets Through a Magma Ocean and Metal Plume Conduits During Core Formation PDF Author: Danielle Brand
Publisher:
ISBN:
Category :
Languages : en
Pages : 59

Get Book Here

Book Description
The gravitational settling dynamics of molten iron droplets through silicate material is an important process during the early impact history of the Earth where settling may have occurred within magma oceans or within metal plume conduits descending rapidly to form the metallic cores in terrestrial bodies. Implications for equilibration of liquid metal in the silicate mantle are key in aiding our understanding of the thermo-chemical evolution of Earth. To simultaneously meet geochemical constraints for rapid core formation as well as siderophile trace element distribution throughout the upper mantle, an emulsion of iron droplets or an emulsion metal plume may be important. Previous experiments have shown that descending metal silicate plumes entrain magma ocean material in trailing conduits that travel to the core-mantle boundary. It has also been shown that the style of metal emulsions will descend through these conduits in two stages, as a coalesced group within the plume head and later settling through the conduit column. However, the nature of iron settling through a magma ocean and within conduits is only understood in a rudimentary way. Here, I consider physical fluid models which study the settling of liquid iron droplets through silicate melts using liquid gallium emulsions and glucose solutions. I test the effect of several physical properties including the metal volumetric ratio, density difference, fluid viscosity, metal droplet diameter, and liquid versus solid metal spheres. Three stages are observed during gravitational settling. Regime 1 reveals rapid sinking of liquid metal droplets and entrainment of low-density (light element) fluids into a metal pond and into the core itself, regime 2 is characterized by upward migration of entrained fluid and regime 3 couples slow compaction of metal droplets at the base with final segregation of residual glucose solution. Results show that high volumetric ratios and low viscosity ratios of metal to magmas will have faster sinking velocities and metal pond or core formation times. I find that increased metal volumetric ratio and liquid (versus solid) metal spheres demonstrates more entrainment of magma into a metal pond or into the core. Higher levels of entrainment predicts the presence of light elements in the core during its formation and suggests “bottom-up” migration of light elements and metal-silicate segregation at high pressures during post core forming events. Upward migration of light elements will leave behind higher bulk density metals that initiate overturn in the outer core and can assist in powering the geodynamo. Finally, the settling process of emulsion metal droplets through magma oceans, plume conduits, and entrainment into the core provide a large surface areas and longer residence time for metal-silicate equilibration to address the excess siderophile observation while still descending rapidly enough to form the Earth's core in 30 My. I observe a metal sediment layer that forms above the metallic core after settling. If this sediment layer is stable, it may be entrained in upwelling mantle plumes over the Earth’s history and contribute towards mixing of siderophile elements with mantle minerals.

Magmatic Ni-Cu and PGE Deposits

Magmatic Ni-Cu and PGE Deposits PDF Author:
Publisher:
ISBN: 9781934969359
Category : Copper
Languages : en
Pages : 370

Get Book Here

Book Description


Treatise on Geophysics, Volume 7

Treatise on Geophysics, Volume 7 PDF Author: David Bercovici
Publisher: Elsevier
ISBN: 0444535802
Category : Science
Languages : en
Pages : 521

Get Book Here

Book Description
Treatise on Geophysics: Mantle Dynamics, Volume 7 aims to provide both a classical and state-of-the-art introduction to the methods and science of mantle dynamics, as well as survey leading order problems (both solved and unsolved) and current understanding of how the mantle works. It is organized around two themes: (1) how is mantle convection studied; and (2) what do we understand about mantle dynamics to date. The first four chapters are thus concerned with pedagogical reviews of the physics of mantle convection; laboratory studies of the fluid dynamics of convection relevant to the mantle; theoretical analysis of mantle dynamics; and numerical analysis and methods of mantle convection. The subsequent chapters concentrate on leading issues of mantle convection itself, which include the energy budget of the mantle; the upper mantle and lithosphere in and near the spreading center (mid-ocean ridge) environment; the dynamics of subducting slabs; hot spots, melting anomalies, and mantle plumes; and finally, geochemical mantle dynamics and mixing. Self-contained volume starts with an overview of the subject then explores each topic in detail Extensive reference lists and cross references with other volumes to facilitate further research Full-color figures and tables support the text and aid in understanding Content suited for both the expert and non-expert

Ore Deposits and Mantle Plumes

Ore Deposits and Mantle Plumes PDF Author: Franco Pirajno
Publisher: Springer Science & Business Media
ISBN: 9401725020
Category : Science
Languages : en
Pages : 572

Get Book Here

Book Description
PERTH Western Australia March 2000 Increasingly explorationists are seeking to find new ore deposits in poorly prospected areas, be they geographically remote, such as in the Arctic, or geologically remote, such as those under sedimentary cover. Modern prospecting techniques, including low-detection-level geochemistry and the use of advanced geophysical instrumentation have greatly assisted explorers but fundamental to any soundly based exploration program remains an understanding of the geological framework of ore deposits. This allows the development of deposit models on macroscopic and mesoscopic scales. This book by Dr. Franeo Pirajno draws on his extensive and wide global experience. To set the scene for a discussion of ore deposit generation Franeo details the Earths internal structures and mantle dynamics. He then explores the impact of mantle plumes on the crust and in particular their role in the production of magmatic environments, and in continental scale rifting. This includes a descriptive section on magmatic provinces around the globe, which highlights the importance of plumes. Any study of Earth processes needs to take into account the effects of extraterrestrial bombardment, and in particular the results from the impacts of large bolides. The effects of these impacts on the atmosphere and on life have now been recognised as profound. It is likely that the effect ofthese impacts on the Earth's crust is as equally profound.

Plate Tectonics and Crustal Evolution

Plate Tectonics and Crustal Evolution PDF Author: Kent C. Condie
Publisher: Butterworth-Heinemann
ISBN: 9780750633864
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
This comprehensive text has established itself over the past 20 years as the definitive work in its fields, presenting a thorough coverage of this key area of structural geology in a way which is ideally suited to advanced undergraduate and masters courses. The thorough coverage means that it is also useful to a wider readership as an up to date survey of plate tectonics. The fourth edition brings the text fully up to date, with coverage of the latest research in crustal evolution, supercontinents, mass extinctions. A new chapter covers the feedbacks of various Earth systems. In addition, a new appendix provides a valuable survey of current methodology.

From Crust to Core

From Crust to Core PDF Author: Simon Mitton
Publisher: Cambridge University Press
ISBN: 1108426697
Category : Nature
Languages : en
Pages : 383

Get Book Here

Book Description
A fascinating historical account of the emergence and development of the new interdisciplinary field of deep carbon science.

Planetary Geology

Planetary Geology PDF Author: Claudio Vita-Finzi
Publisher: Liverpool University Press
ISBN: 1903544874
Category : Science
Languages : en
Pages : 612

Get Book Here

Book Description
In a dynamic treatment of planets of the Solar System from a unified perspective Planetary Geology deals with the origin of planetary bodies, the forces that fashion their surfaces, the rise and fall of icecaps and oceans, and the role of life in planetary history.

Magmatic Sulfide Deposits

Magmatic Sulfide Deposits PDF Author: Anthony J. Naldrett
Publisher: Springer Science & Business Media
ISBN: 3662084449
Category : Science
Languages : en
Pages : 744

Get Book Here

Book Description
This book is written by a leading authority on the subject of magmatic sulfide deposits. An overview of deposit types, accompanied by a summary of the resources of nickel, copper and platinum-group elements in the world’s principal known deposits, is followed by a summary of the relevant physical chemistry. The core of the book comprises a discussion about the geology and geochemistry of each of the deposit types in turn, accompanied by the implications of this data to the origin of the deposits in the light of our understanding of the chemical processes involved. A final chapter focuses on the use of the genetic concepts in exploration.

Geochemistry

Geochemistry PDF Author: William M. White
Publisher: John Wiley & Sons
ISBN: 1118485270
Category : Science
Languages : en
Pages : 1218

Get Book Here

Book Description
This book provides a comprehensive introduction to the field of geochemistry. The book first lays out the ‘geochemical toolbox’: the basic principles and techniques of modern geochemistry, beginning with a review of thermodynamics and kinetics as they apply to the Earth and its environs. These basic concepts are then applied to understanding processes in aqueous systems and the behavior of trace elements in magmatic systems. Subsequent chapters introduce radiogenic and stable isotope geochemistry and illustrate their application to such diverse topics as determining geologic time, ancient climates, and the diets of prehistoric peoples. The focus then broadens to the formation of the solar system, the Earth, and the elements themselves. Then the composition of the Earth itself becomes the topic, examining the composition of the core, the mantle, and the crust and exploring how this structure originated. A final chapter covers organic chemistry, including the origin of fossil fuels and the carbon cycle’s role in controlling Earth’s climate, both in the geologic past and the rapidly changing present. Geochemistry is essential reading for all earth science students, as well as for researchers and applied scientists who require an introduction to the essential theory of geochemistry, and a survey of its applications in the earth and environmental sciences. Additional resources can be found at: www.wiley.com/go/white/geochemistry

Earth as an Evolving Planetary System

Earth as an Evolving Planetary System PDF Author: Kent C. Condie
Publisher: Academic Press
ISBN: 0123852285
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
Earth as an Evolving Planetary System, Second Edition, explores key topics and questions relating to the evolution of the Earth's crust and mantle over the last four billion years. This updated edition features exciting new information on Earth and planetary evolution and examines how all subsystems in our planet—crust, mantle, core, atmosphere, oceans and life—have worked together and changed over time. It synthesizes data from the fields of oceanography, geophysics, planetology, and geochemistry to address Earth’s evolution. This volume consists of 10 chapters, including two new ones that deal with the Supercontinent Cycle and on Great Events in Earth history. There are also new and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes. In addition, the book now includes new tomographic data tracking plume tails into the deep mantle. This book is intended for advanced undergraduate and graduate students in Earth, Atmospheric, and Planetary Sciences, with a basic knowledge of geology, biology, chemistry, and physics. It also may serve as a reference tool for structural geologists and professionals in related disciplines who want to look at the Earth in a broader perspective. Kent Condie's corresponding interactive CD, Plate Tectonics and How the Earth Works, can be purchased from Tasa Graphic Arts here: http://www.tasagraphicarts.com/progptearth.html Two new chapters on the Supercontinent Cycle and on Great Events in Earth history New and updated sections on Earth's thermal history, planetary volcanism, planetary crusts, the onset of plate tectonics, changing composition of the oceans and atmosphere, and paleoclimatic regimes Also new in this Second Edition: the lower mantle and the role of the post-perovskite transition, the role of water in the mantle, new tomographic data tracking plume tails into the deep mantle, Euxinia in Proterozoic oceans, The Hadean, A crustal age gap at 2.4-2.2 Ga, and continental growth