Semidynamical Systems in Infinite Dimensional Spaces

Semidynamical Systems in Infinite Dimensional Spaces PDF Author: Stephen H. Saperstone
Publisher: Springer Science & Business Media
ISBN: 1461259770
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Where do solutions go, and how do they behave en route? These are two of the major questions addressed by the qualita tive theory of differential equations. The purpose of this book is to answer these questions for certain classes of equa tions by recourse to the framework of semidynamical systems (or topological dynamics as it is sometimes called). This approach makes it possible to treat a seemingly broad range of equations from nonautonomous ordinary differential equa tions and partial differential equations to stochastic differ ential equations. The methods are not limited to the examples presented here, though. The basic idea is this: Embed some representation of the solutions of the equation (and perhaps the equation itself) in an appropriate function space. This space serves as the phase space for the semidynamical system. The phase map must be chosen so as to generate solutions to the equation from an initial value. In most instances it is necessary to provide a "weak" topology on the phase space. Typically the space is infinite dimensional. These considerations motivate the requirement to study semidynamical systems in non locally compact spaces. Our objective here is to present only those results needed for the kinds of applications one is likely to encounter in differen tial equations. Additional properties and extensions of ab stract semidynamical systems are left as exercises. The power of the semidynamical framework makes it possible to character- Preface ize the asymptotic behavior of the solutions of such a wide class of equations.

Semidynamical Systems in Infinite Dimensional Spaces

Semidynamical Systems in Infinite Dimensional Spaces PDF Author: Stephen H. Saperstone
Publisher: Springer Science & Business Media
ISBN: 1461259770
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Where do solutions go, and how do they behave en route? These are two of the major questions addressed by the qualita tive theory of differential equations. The purpose of this book is to answer these questions for certain classes of equa tions by recourse to the framework of semidynamical systems (or topological dynamics as it is sometimes called). This approach makes it possible to treat a seemingly broad range of equations from nonautonomous ordinary differential equa tions and partial differential equations to stochastic differ ential equations. The methods are not limited to the examples presented here, though. The basic idea is this: Embed some representation of the solutions of the equation (and perhaps the equation itself) in an appropriate function space. This space serves as the phase space for the semidynamical system. The phase map must be chosen so as to generate solutions to the equation from an initial value. In most instances it is necessary to provide a "weak" topology on the phase space. Typically the space is infinite dimensional. These considerations motivate the requirement to study semidynamical systems in non locally compact spaces. Our objective here is to present only those results needed for the kinds of applications one is likely to encounter in differen tial equations. Additional properties and extensions of ab stract semidynamical systems are left as exercises. The power of the semidynamical framework makes it possible to character- Preface ize the asymptotic behavior of the solutions of such a wide class of equations.

Semidynamical Systems in Infinite Dimensional Spaces

Semidynamical Systems in Infinite Dimensional Spaces PDF Author: Stephen H. Saperstone
Publisher:
ISBN: 9781461259787
Category :
Languages : en
Pages : 492

Get Book Here

Book Description


Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF Author: Roger Temam
Publisher: Springer Science & Business Media
ISBN: 1461206456
Category : Mathematics
Languages : en
Pages : 670

Get Book Here

Book Description
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.

Weakly Connected Neural Networks

Weakly Connected Neural Networks PDF Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 1461218284
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Author: P. Constantin
Publisher: Springer Science & Business Media
ISBN: 1461235065
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.

Hysteresis and Phase Transitions

Hysteresis and Phase Transitions PDF Author: Martin Brokate
Publisher: Springer Science & Business Media
ISBN: 1461240484
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
Hysteresis is an exciting and mathematically challenging phenomenon that oc curs in rather different situations: jt, can be a byproduct offundamental physical mechanisms (such as phase transitions) or the consequence of a degradation or imperfection (like the play in a mechanical system), or it is built deliberately into a system in order to monitor its behaviour, as in the case of the heat control via thermostats. The delicate interplay between memory effects and the occurrence of hys teresis loops has the effect that hysteresis is a genuinely nonlinear phenomenon which is usually non-smooth and thus not easy to treat mathematically. Hence it was only in the early seventies that the group of Russian scientists around M. A. Krasnoselskii initiated a systematic mathematical investigation of the phenomenon of hysteresis which culminated in the fundamental monograph Krasnoselskii-Pokrovskii (1983). In the meantime, many mathematicians have contributed to the mathematical theory, and the important monographs of 1. Mayergoyz (1991) and A. Visintin (1994a) have appeared. We came into contact with the notion of hysteresis around the year 1980.

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations PDF Author: Charles Li
Publisher: Springer Science & Business Media
ISBN: 1461218381
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds. Their techniques are based on an infinite dimensional generalisation of the graph transform and can be viewed as an infinite dimensional generalisation of Fenichels results. As such, they may be applied to a broad class of infinite dimensional dynamical systems.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations PDF Author: Victor Isakov
Publisher: Springer Science & Business Media
ISBN: 1489900306
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Manifolds, Tensor Analysis, and Applications

Manifolds, Tensor Analysis, and Applications PDF Author: Ralph Abraham
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

Applied Functional Analysis

Applied Functional Analysis PDF Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 1461208211
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
The second part of an elementary textbook which combines linear functional analysis, nonlinear functional analysis, and their substantial applications. The book addresses undergraduates and beginning graduates of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world and which play an important role in the history of mathematics. The books approach is to attempt to determine the most important applications. These concern integral equations, differential equations, bifurcation theory, the moment problem, Cebysev approximation, the optimal control of rockets, game theory, symmetries and conservation laws, the quark model, and gauge theory in elementary particle physics. The presentation is self-contained and requires only that readers be familiar with some basic facts of calculus.