Author: National Geophysical and Solar-Terrestrial Data Center
Publisher:
ISBN:
Category : Seismology
Languages : en
Pages : 24
Book Description
Seismological Publications and Services
Author: National Geophysical and Solar-Terrestrial Data Center
Publisher:
ISBN:
Category : Seismology
Languages : en
Pages : 24
Book Description
Publisher:
ISBN:
Category : Seismology
Languages : en
Pages : 24
Book Description
Routine Data Processing in Earthquake Seismology
Author: Jens Havskov
Publisher: Springer Science & Business Media
ISBN: 9048186978
Category : Science
Languages : en
Pages : 350
Book Description
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com
Publisher: Springer Science & Business Media
ISBN: 9048186978
Category : Science
Languages : en
Pages : 350
Book Description
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com
Introduction to Seismology
Author: Peter M. Shearer
Publisher: Cambridge University Press
ISBN: 1139478753
Category : Science
Languages : en
Pages : 397
Book Description
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.
Publisher: Cambridge University Press
ISBN: 1139478753
Category : Science
Languages : en
Pages : 397
Book Description
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.
Exploration Seismology
Author: R. E. Sheriff
Publisher: Cambridge University Press
ISBN: 1139643118
Category : Science
Languages : en
Pages : 1261
Book Description
This is the completely updated revision of the highly regarded book Exploration Seismology. Available now in one volume, this textbook provides a complete and systematic discussion of exploration seismology. The first part of the book looks at the history of exploration seismology and the theory - developed from the first principles of physics. All aspects of seismic acquisition are then described. The second part of the book goes on to discuss data-processing and interpretation. Applications of seismic exploration to groundwater, environmental and reservoir geophysics are also included. The book is designed to give a comprehensive up-to-date picture of the applications of seismology. Exploration Seismology's comprehensiveness makes it suitable as a text for undergraduate courses for geologists, geophysicists and engineers, as well as a guide and reference work for practising professionals.
Publisher: Cambridge University Press
ISBN: 1139643118
Category : Science
Languages : en
Pages : 1261
Book Description
This is the completely updated revision of the highly regarded book Exploration Seismology. Available now in one volume, this textbook provides a complete and systematic discussion of exploration seismology. The first part of the book looks at the history of exploration seismology and the theory - developed from the first principles of physics. All aspects of seismic acquisition are then described. The second part of the book goes on to discuss data-processing and interpretation. Applications of seismic exploration to groundwater, environmental and reservoir geophysics are also included. The book is designed to give a comprehensive up-to-date picture of the applications of seismology. Exploration Seismology's comprehensiveness makes it suitable as a text for undergraduate courses for geologists, geophysicists and engineers, as well as a guide and reference work for practising professionals.
Seismology
Author: Bogdan Felix Apostol
Publisher:
ISBN: 9781536184921
Category :
Languages : en
Pages : 345
Book Description
The book offers a comprehensive physical theory of the earthquakes. The presentation level is rather mathematical, but thorough physical explanations are provided everywhere.We do not know where and when and how great an earthquake occurs. The seismic events have a statistical character. Statistical Seismology is discussed extensively in this book, centered on the famous Gutenberg-Richter, Omori and Bath statistical laws. The earthquakes may be correlated, foreshocks may herald a main shock, aftershocks may follow a main shock. The pattern of such correlations, their extension in time and magnitude are discussed in this book. The earthquakes are produced by forces acting for a short time in a localized focal region placed inside the Earth. These forces give rise to elastic deformations and elastic waves, which arrive at Earth' surface as earthquakes. The nature of these forces and their effects are discussed in this book. Any earthquake begins by a feeble tremor, the so-called P and S seismic waves, followed by a large, main shock, which looks like a wall with a long tail. This book explains why it is so. We cannot predict the occurrence of the earthquakes. But we can know something about them. For instance, there exist seismographs, a sort of pendulums, which record the ground displacement. There exist agencies which tell us the earthquake magnitude, its energy, location, fault slip, by reading the seismograms. We may wish to get such information by ourselves, almost in real time, knowing the seismograph recordings, to be independent of the seismological agencies. This book teaches us how to do that. The book describes the accumulation of the seismic energy in the focal region, its release, the shape and strength of the ground displacement. It is shown that the seismic faults may give rise to rather complicated tensorial forces, which account both for the static deformations of the Earth's surface and for the seismic waves produced in an earthquake. A model of energy accumulation in the earthquake focus is formulated and used to derive the statistical Gutenberg-Richter laws. These laws are used to analize the statistics of the seismic events in Vrancea, Romania, as an example. A special emphasis is given to the short-term seismic activity. The book introduces the point tensorial force of the seismic faults and employs it to present both the static deformation of the Earth's crust in epicentral regions and the seismic waves and the main shock which appear on any typical seismogram. This later point is the solution of the so-called Lamb seismological problem. The book describes the determination of the seismic-moment tensor, earthquake magnitude, the volume of the focal region, the duration of the seismic activity in the focus, the fault orientation and the fault slip from measurements of the seismic waves at the Earth's surface. This is the solution of the inverse seismological problem. A special point is a qualitative estimation of these parameters which can be practised by everyone in real time. The book presents the vibrations of the Earth viewed as a solid sphere and the vibrations of an elastic half-space. The static deformations of the elastic half-space under the action of point forces are also included. Finally, earthquake correlations, Bath's law and earthquake entropy are discussed. The book is an original monograph of Seismology, intended for the use of the students, researchers and the public who wish to become familiar with the physics and mathematics of the earthquakes. It provides the understanding of the earthquakes and specific knowledge we may have of them.
Publisher:
ISBN: 9781536184921
Category :
Languages : en
Pages : 345
Book Description
The book offers a comprehensive physical theory of the earthquakes. The presentation level is rather mathematical, but thorough physical explanations are provided everywhere.We do not know where and when and how great an earthquake occurs. The seismic events have a statistical character. Statistical Seismology is discussed extensively in this book, centered on the famous Gutenberg-Richter, Omori and Bath statistical laws. The earthquakes may be correlated, foreshocks may herald a main shock, aftershocks may follow a main shock. The pattern of such correlations, their extension in time and magnitude are discussed in this book. The earthquakes are produced by forces acting for a short time in a localized focal region placed inside the Earth. These forces give rise to elastic deformations and elastic waves, which arrive at Earth' surface as earthquakes. The nature of these forces and their effects are discussed in this book. Any earthquake begins by a feeble tremor, the so-called P and S seismic waves, followed by a large, main shock, which looks like a wall with a long tail. This book explains why it is so. We cannot predict the occurrence of the earthquakes. But we can know something about them. For instance, there exist seismographs, a sort of pendulums, which record the ground displacement. There exist agencies which tell us the earthquake magnitude, its energy, location, fault slip, by reading the seismograms. We may wish to get such information by ourselves, almost in real time, knowing the seismograph recordings, to be independent of the seismological agencies. This book teaches us how to do that. The book describes the accumulation of the seismic energy in the focal region, its release, the shape and strength of the ground displacement. It is shown that the seismic faults may give rise to rather complicated tensorial forces, which account both for the static deformations of the Earth's surface and for the seismic waves produced in an earthquake. A model of energy accumulation in the earthquake focus is formulated and used to derive the statistical Gutenberg-Richter laws. These laws are used to analize the statistics of the seismic events in Vrancea, Romania, as an example. A special emphasis is given to the short-term seismic activity. The book introduces the point tensorial force of the seismic faults and employs it to present both the static deformation of the Earth's crust in epicentral regions and the seismic waves and the main shock which appear on any typical seismogram. This later point is the solution of the so-called Lamb seismological problem. The book describes the determination of the seismic-moment tensor, earthquake magnitude, the volume of the focal region, the duration of the seismic activity in the focus, the fault orientation and the fault slip from measurements of the seismic waves at the Earth's surface. This is the solution of the inverse seismological problem. A special point is a qualitative estimation of these parameters which can be practised by everyone in real time. The book presents the vibrations of the Earth viewed as a solid sphere and the vibrations of an elastic half-space. The static deformations of the elastic half-space under the action of point forces are also included. Finally, earthquake correlations, Bath's law and earthquake entropy are discussed. The book is an original monograph of Seismology, intended for the use of the students, researchers and the public who wish to become familiar with the physics and mathematics of the earthquakes. It provides the understanding of the earthquakes and specific knowledge we may have of them.
Principles of Seismology
Author: Agustín Udías Vallina
Publisher: Cambridge University Press
ISBN: 1107138698
Category : Nature
Languages : en
Pages : 573
Book Description
This new edition features a completely new chapter on digital seismic data processing, numerous examples and 100 problems.
Publisher: Cambridge University Press
ISBN: 1107138698
Category : Nature
Languages : en
Pages : 573
Book Description
This new edition features a completely new chapter on digital seismic data processing, numerous examples and 100 problems.
An Introduction to Seismology, Earthquakes, and Earth Structure
Author: Seth Stein
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
Publisher: John Wiley & Sons
ISBN: 144431131X
Category : Science
Languages : en
Pages : 512
Book Description
An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.
Theoretical Global Seismology
Author: F. A. Dahlen
Publisher: Princeton University Press
ISBN: 0691216150
Category : Science
Languages : en
Pages : 1040
Book Description
After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.
Publisher: Princeton University Press
ISBN: 0691216150
Category : Science
Languages : en
Pages : 1040
Book Description
After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.
Observatory Seismology
Author: Joe J. Litehiser
Publisher: Univ of California Press
ISBN: 9780520065826
Category : Science
Languages : en
Pages : 400
Book Description
The first effective seismographs were built between 1879 and 1890. In 1885, E. S. Holden, an astronomer and then president of the University of California, instigated the purchase of the best available instruments of the time "to keep a register of all earthquake shocks in order to be able to control the positions of astronomical instruments." These seismographs were installed two years later at Lick Observatory on Mt. Hamilton and at the Berkeley campus of the University. Over the years those stations have been upgraded and joined by other seismographic stations administered at Berkeley, to become the oldest continuously operating stations in the Western Hemisphere. The first hundred years of the Seismographic Stations of the University of California at Berkeley, years in which seismology has often assumed an unforeseen role in issues of societal and political importance, ended in 1987. To celebrate the centennial a distinguished group of fellows, staff, and friends of the Stations met on the Berkeley campus in May 1987. The papers they presented are gathered in this book, a distillation of the current state of the art in observatory seismology. Ranging through subjects of past, present, and future seismological interest, they provide a benchmark reference for years to come. The first effective seismographs were built between 1879 and 1890. In 1885, E. S. Holden, an astronomer and then president of the University of California, instigated the purchase of the best available instruments of the time "to keep a register of all earthquake shocks in order to be able to control the positions of astronomical instruments." These seismographs were installed two years later at Lick Observatory on Mt. Hamilton and at the Berkeley campus of the University. Over the years those stations have been upgraded and joined by other seismographic stations administered at Berkeley, to become the oldest continuously operating stations in the Western Hemisphere. The first hundred years of the Seismographic Stations of the University of California at Berkeley, years in which seismology has often assumed an unforeseen role in issues of societal and political importance, ended in 1987. To celebrate the centennial a distinguished group of fellows, staff, and friends of the Stations met on the Berkeley campus in May 1987. The papers they presented are gathered in this book, a distillation of the current state of the art in observatory seismology. Ranging through subjects of past, present, and future seismological interest, they provide a benchmark reference for years to come.
Publisher: Univ of California Press
ISBN: 9780520065826
Category : Science
Languages : en
Pages : 400
Book Description
The first effective seismographs were built between 1879 and 1890. In 1885, E. S. Holden, an astronomer and then president of the University of California, instigated the purchase of the best available instruments of the time "to keep a register of all earthquake shocks in order to be able to control the positions of astronomical instruments." These seismographs were installed two years later at Lick Observatory on Mt. Hamilton and at the Berkeley campus of the University. Over the years those stations have been upgraded and joined by other seismographic stations administered at Berkeley, to become the oldest continuously operating stations in the Western Hemisphere. The first hundred years of the Seismographic Stations of the University of California at Berkeley, years in which seismology has often assumed an unforeseen role in issues of societal and political importance, ended in 1987. To celebrate the centennial a distinguished group of fellows, staff, and friends of the Stations met on the Berkeley campus in May 1987. The papers they presented are gathered in this book, a distillation of the current state of the art in observatory seismology. Ranging through subjects of past, present, and future seismological interest, they provide a benchmark reference for years to come. The first effective seismographs were built between 1879 and 1890. In 1885, E. S. Holden, an astronomer and then president of the University of California, instigated the purchase of the best available instruments of the time "to keep a register of all earthquake shocks in order to be able to control the positions of astronomical instruments." These seismographs were installed two years later at Lick Observatory on Mt. Hamilton and at the Berkeley campus of the University. Over the years those stations have been upgraded and joined by other seismographic stations administered at Berkeley, to become the oldest continuously operating stations in the Western Hemisphere. The first hundred years of the Seismographic Stations of the University of California at Berkeley, years in which seismology has often assumed an unforeseen role in issues of societal and political importance, ended in 1987. To celebrate the centennial a distinguished group of fellows, staff, and friends of the Stations met on the Berkeley campus in May 1987. The papers they presented are gathered in this book, a distillation of the current state of the art in observatory seismology. Ranging through subjects of past, present, and future seismological interest, they provide a benchmark reference for years to come.
Earthquake Data Services and Publications
Author: National Geophysical and Solar-Terrestrial Data Center
Publisher:
ISBN:
Category : Earthquakes
Languages : en
Pages : 32
Book Description
Publisher:
ISBN:
Category : Earthquakes
Languages : en
Pages : 32
Book Description