Science and Technology of Mesoscopic Structures

Science and Technology of Mesoscopic Structures PDF Author: Susumu Namba
Publisher: Springer Science & Business Media
ISBN: 4431669221
Category : Science
Languages : en
Pages : 477

Get Book Here

Book Description
The International Symposium on the Science and Technology of Mesoscopic Structures was held at Shin-Kohkaido in Nara from November 6-8, 1991. The symposium was sponsored by the International Institute for Advanced Study and partly by Nara Prefecture, Nara City, Nara Convention Bureau, and the Ministry of Education, Science and Culture of Japan, as well as industrial organizations. We would like to acknowledge the support of the symposium by these or ganizations. The scope of the symposium was planned by the organizing committee to cover outstanding contributors in the fields of (1) ballistic transport, (2) electron wave guides and interference effects, (3) quantum confinement effects, (4) tunneling phenomena, (5) optical nonlinearity, and (6) fabrication technology of meso scopic structures. Twenty-six invited speakers were selected from the United States, Europe, and Japan. In addition twenty-four contributed papers were accepted for presentation at the poster session. These papers are included in the proceedings. We are grateful to the organizing committee, Ms. Y oshiko Kusaki of the Inter national Institute for Advanced Study for the secretarial service, and Dr. Nobuya Mori, Osaka University, for his scientific cooperation. Thanks are also due to the authors and the participants for their contributions to a successful symposium.

Science and Technology of Mesoscopic Structures

Science and Technology of Mesoscopic Structures PDF Author: Susumu Namba
Publisher: Springer Science & Business Media
ISBN: 4431669221
Category : Science
Languages : en
Pages : 477

Get Book Here

Book Description
The International Symposium on the Science and Technology of Mesoscopic Structures was held at Shin-Kohkaido in Nara from November 6-8, 1991. The symposium was sponsored by the International Institute for Advanced Study and partly by Nara Prefecture, Nara City, Nara Convention Bureau, and the Ministry of Education, Science and Culture of Japan, as well as industrial organizations. We would like to acknowledge the support of the symposium by these or ganizations. The scope of the symposium was planned by the organizing committee to cover outstanding contributors in the fields of (1) ballistic transport, (2) electron wave guides and interference effects, (3) quantum confinement effects, (4) tunneling phenomena, (5) optical nonlinearity, and (6) fabrication technology of meso scopic structures. Twenty-six invited speakers were selected from the United States, Europe, and Japan. In addition twenty-four contributed papers were accepted for presentation at the poster session. These papers are included in the proceedings. We are grateful to the organizing committee, Ms. Y oshiko Kusaki of the Inter national Institute for Advanced Study for the secretarial service, and Dr. Nobuya Mori, Osaka University, for his scientific cooperation. Thanks are also due to the authors and the participants for their contributions to a successful symposium.

Science and Technology of Mesoscopic Structures

Science and Technology of Mesoscopic Structures PDF Author: Susumu Namba
Publisher: Springer
ISBN: 9783540700906
Category : Mesoscopic phenomena (Physics)
Languages : en
Pages : 469

Get Book Here

Book Description


Conductance in Model Mesoscopic Structures

Conductance in Model Mesoscopic Structures PDF Author: Thomas Ouchterlony
Publisher:
ISBN: 9789172192171
Category :
Languages : en
Pages : 57

Get Book Here

Book Description


Mesoscopic Physics of Complex Materials

Mesoscopic Physics of Complex Materials PDF Author: T.S. Chow
Publisher: Springer Science & Business Media
ISBN: 9780387950327
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description
A cross-disciplinary study of the physical properties of complex fluids, solids, and interfaces as a function of their mesoscopic structures, with empasis on nonequilibrium phenomena. The book introduces readers to the methods of non-equilibrium statistical mechanics as applied to complex materials, but always connects theories with experiments. It shows the underlying connections between topics as diverse as critical phenomena in colloidal dynamics, glassy state relaxation and deformation, reinforced polymer composites, molecular level mixing in nanocomposites, and rough surfaces and interfaces. At the same time, each chapter is designed to be independent from the others so that the book can serve as a reference work as well as a text. It is not designed to review all the recent work in mesoscopic physics, which spans many disciplines, but rather attempts to establish a general framework for understanding and developing new materials that can not be designed by the trial and error methods. A familiarity with the basics of statistical mechanics and condensed matter physics is assumed.

Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics PDF Author: Tsuneya Ando
Publisher: Springer Science & Business Media
ISBN: 3642719767
Category : Technology & Engineering
Languages : en
Pages : 293

Get Book Here

Book Description
Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139643010
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Introduction to Mesoscopic Physics

Introduction to Mesoscopic Physics PDF Author: Yoseph Imry
Publisher:
ISBN: 9780198507383
Category : Mesoscopic phenomena (Physics).
Languages : en
Pages : 258

Get Book Here

Book Description
Mesoscopic physics refers to the physics of structures larger than a nanometer (one billionth of a meter) but smaller than a micrometer (one millionth of a meter). This size range is the stage on which the exciting new research on submicroscopic and electronic and mechanical devices is being done. This research often crosses the boundary between physics and engineering, since engineering such tiny electronic components requires a firm grasp of quantum physics. Applications for the future may include such wonders as microscopic robot surgeons that travel through the blood stream to repair clogged arteries, submicroscopic actuators and builders, and supercomputers that fit on the head of a pin. The world of the future is being planned and built by physicists, engineers, and chemists working in the microscopic realm. This book can be used as the main text in a course on mesoscopic physics or as a supplementary text in electronic devices, semiconductor devices, and condensed matter physics courses. For this new edition, the author has substantially updated and modified the material especially of chapters 3: Dephasing, 8: Noise in mesoscopic systems, and the concluding chapter 9.

Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics PDF Author: Igor O. Kulik
Publisher: Springer Science & Business Media
ISBN: 9401143277
Category : Science
Languages : en
Pages : 500

Get Book Here

Book Description
Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.

The Science and Technology of Carbon Nanotubes

The Science and Technology of Carbon Nanotubes PDF Author: T. Yamabe
Publisher: Elsevier
ISBN: 0080540759
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description
Carbon Nanotubes (CNT) is the material lying between fullerenes and graphite as a new member of carbon allotropes. The study of CNT has gradually become more and more independent from that of fullerenes. As a novel carbon material, CNTs will be far more useful and important than fullerenes from a practical point of view, in that they will be directly related to an ample field of nanotechnology. This book presents a timely, second-generation monograph covering as far as practical, application of CNT as the newest science of these materials. Most updated summaries for preparation, purification and structural characterisation of single walled CNT and multi walled CNT are given. Similarly, the most recent developments in the theoretical treatments of electronic structures and vibrational structures are covered. The newest magnetic, optical and electrical solid-state properties providing a vital base to actual application technologies are described. Explosive research trends towards application of CNTs, including the prospect for large-scale synthesis, are also introduced. It is the most remarkable feature of this monograph that it devotes more than a half of the whole volume to practical aspects and offers readers the newest developments of the science and technological aspects of CNTs.

Mesoscopic Size Fabrication Technology

Mesoscopic Size Fabrication Technology PDF Author: Yasuhiko Arakawa
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Mesoscopic and/or quantum microstructures have recently received great attentions, since new physical phenomena with possible applications to optical devices are expected in these structures'. For this purpose, fabrication technologies including fractional layer superlattice growth, the laser assisted atomic layer epitaxy, and the facet wire growth are intensively investigated. In particular, use of both metal-organic chemical vapor deposition (MOCVD) selective growth technique and electron beam (EB) lithography technique would play important roles. In this paper, we discuss fabrication technologies for quantum wires and quantum boxes with emphasis on these electron-beam assisted MOCVD technologies. In addition, physics of the mesoscopic structures for laser applications is also discussed.