Author: Ioan Merches
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Scale Transitions As Foundations Of Physics
Author: Ioan Merches
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Scale Invariance
Author: Annick LESNE
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406
Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406
Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Phase Transitions and Relaxation in Systems with Competing Energy Scales
Author: T. Riste
Publisher: Springer Science & Business Media
ISBN: 9401119082
Category : Science
Languages : en
Pages : 456
Book Description
Systems with competing energy scales are widespread and exhibit rich and subtle behaviour, although their systematic study is a relatively recent activity. This text presents lectures given at a NATO Advanced Study Institute reviewing the current knowledge and understanding of this fascinating subject, particularly with regard to phase transitions and dynamics, at an advanced tutorial level. Both general and specific aspects are considered, with competitions having several origins; differences in intrinsic interactions, interplay between intrinsic and extrinsic effects, such as geometry and disorder; irreversibility and non-equilibration. Among the specific physical application areas are supercooled liquids and glasses, high-temperature superconductors, flux or vortex pinning and motion, charge density waves, domain growth and coarsening, and electron solidification.
Publisher: Springer Science & Business Media
ISBN: 9401119082
Category : Science
Languages : en
Pages : 456
Book Description
Systems with competing energy scales are widespread and exhibit rich and subtle behaviour, although their systematic study is a relatively recent activity. This text presents lectures given at a NATO Advanced Study Institute reviewing the current knowledge and understanding of this fascinating subject, particularly with regard to phase transitions and dynamics, at an advanced tutorial level. Both general and specific aspects are considered, with competitions having several origins; differences in intrinsic interactions, interplay between intrinsic and extrinsic effects, such as geometry and disorder; irreversibility and non-equilibration. Among the specific physical application areas are supercooled liquids and glasses, high-temperature superconductors, flux or vortex pinning and motion, charge density waves, domain growth and coarsening, and electron solidification.
Zero to Infinity
Author: Peter Rowlands
Publisher: World Scientific
ISBN: 9812709150
Category : Science
Languages : en
Pages : 738
Book Description
Unique in its field, this book uses a methodology that is entirely new, creating the simplest and most abstract foundations for physics to date. The author proposes a fundamental description of process in a universal computational rewrite system, leading to an irreducible form of relativistic quantum mechanics from a single operator. This is not only simpler, and more fundamental, but also seemingly more powerful than any other quantum mechanics formalism available. The methodology finds immediate applications in particle physics, theoretical physics and theoretical computing. In addition, taking the rewrite structure more generally as a description of process, the book shows how it can be applied to large-scale structures beyond the realm of fundamental physics. Sample Chapter(s). Chapter 1: Zero (228 KB). Contents: Zero; Why Does Physics Work?; The Emergence of Physics; Groups and Representations; Breaking the Dirac Code; The Dirac Nilpotent; Nonrelativistic Quantum Mechanics and the Classical Transition; The Classical and Special Relativistic Approximations; The Resolution of Paradoxes; Electric, Strong and Weak Interactions; QED and Its Analogues; Vacuum; Fermion and Boson Structures; A Representation of Strong and Weak Interactions; Grand Unification and Particle Masses; The Factor 2 and Duality; Gravity and Inertia; Dimensionality, Strings and Quantum Gravity; Nature''s Code; Nature''s Rule; Infinity. Readership: Researchers in quantum, theoretical and high energy physics.
Publisher: World Scientific
ISBN: 9812709150
Category : Science
Languages : en
Pages : 738
Book Description
Unique in its field, this book uses a methodology that is entirely new, creating the simplest and most abstract foundations for physics to date. The author proposes a fundamental description of process in a universal computational rewrite system, leading to an irreducible form of relativistic quantum mechanics from a single operator. This is not only simpler, and more fundamental, but also seemingly more powerful than any other quantum mechanics formalism available. The methodology finds immediate applications in particle physics, theoretical physics and theoretical computing. In addition, taking the rewrite structure more generally as a description of process, the book shows how it can be applied to large-scale structures beyond the realm of fundamental physics. Sample Chapter(s). Chapter 1: Zero (228 KB). Contents: Zero; Why Does Physics Work?; The Emergence of Physics; Groups and Representations; Breaking the Dirac Code; The Dirac Nilpotent; Nonrelativistic Quantum Mechanics and the Classical Transition; The Classical and Special Relativistic Approximations; The Resolution of Paradoxes; Electric, Strong and Weak Interactions; QED and Its Analogues; Vacuum; Fermion and Boson Structures; A Representation of Strong and Weak Interactions; Grand Unification and Particle Masses; The Factor 2 and Duality; Gravity and Inertia; Dimensionality, Strings and Quantum Gravity; Nature''s Code; Nature''s Rule; Infinity. Readership: Researchers in quantum, theoretical and high energy physics.
Beyond Einstein
Author: David E. Rowe
Publisher: Birkhäuser
ISBN: 1493977083
Category : Mathematics
Languages : en
Pages : 500
Book Description
Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology explores the rich interplay between mathematical and physical ideas by studying the interactions of major actors and the roles of important research communities over the course of the last century.
Publisher: Birkhäuser
ISBN: 1493977083
Category : Mathematics
Languages : en
Pages : 500
Book Description
Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology explores the rich interplay between mathematical and physical ideas by studying the interactions of major actors and the roles of important research communities over the course of the last century.
The Philosophy of Cosmology
Author: Khalil Chamcham
Publisher: Cambridge University Press
ISBN: 131699595X
Category : Science
Languages : en
Pages : 527
Book Description
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
Publisher: Cambridge University Press
ISBN: 131699595X
Category : Science
Languages : en
Pages : 527
Book Description
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
Non-Equilibrium Phase Transitions
Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 9048128692
Category : Science
Languages : en
Pages : 562
Book Description
“The importance of knowledge consists not only in its direct practical utility but also in the fact the it promotes a widely contemplative habit of mind; on this ground, utility is to be found in much of the knowledge that is nowadays labelled ‘useless’. ” Bertrand Russel, In Praise of Idleness, London (1935) “Why are scientists in so many cases so deeply interested in their work ? Is it merely because it is useful ? It is only necessary to talk to such scientists to discover that the utilitarian possibilities of their work are generally of secondary interest to them. Something else is primary. ” David Bohm, On creativity, Abingdon (1996) In this volume, the dynamical critical behaviour of many-body systems far from equilibrium is discussed. Therefore, the intrinsic properties of the - namics itself, rather than those of the stationary state, are in the focus of 1 interest. Characteristically, far-from-equilibrium systems often display - namical scaling, even if the stationary state is very far from being critical. A 1 As an example of a non-equilibrium phase transition, with striking practical c- sequences, consider the allotropic change of metallic ?-tin to brittle ?-tin. At o equilibrium, the gray ?-Sn becomes more stable than the silvery ?-Sn at 13. 2 C. Kinetically, the transition between these two solid forms of tin is rather slow at higher temperatures. It starts from small islands of ?-Sn, the growth of which proceeds through an auto-catalytic reaction.
Publisher: Springer Science & Business Media
ISBN: 9048128692
Category : Science
Languages : en
Pages : 562
Book Description
“The importance of knowledge consists not only in its direct practical utility but also in the fact the it promotes a widely contemplative habit of mind; on this ground, utility is to be found in much of the knowledge that is nowadays labelled ‘useless’. ” Bertrand Russel, In Praise of Idleness, London (1935) “Why are scientists in so many cases so deeply interested in their work ? Is it merely because it is useful ? It is only necessary to talk to such scientists to discover that the utilitarian possibilities of their work are generally of secondary interest to them. Something else is primary. ” David Bohm, On creativity, Abingdon (1996) In this volume, the dynamical critical behaviour of many-body systems far from equilibrium is discussed. Therefore, the intrinsic properties of the - namics itself, rather than those of the stationary state, are in the focus of 1 interest. Characteristically, far-from-equilibrium systems often display - namical scaling, even if the stationary state is very far from being critical. A 1 As an example of a non-equilibrium phase transition, with striking practical c- sequences, consider the allotropic change of metallic ?-tin to brittle ?-tin. At o equilibrium, the gray ?-Sn becomes more stable than the silvery ?-Sn at 13. 2 C. Kinetically, the transition between these two solid forms of tin is rather slow at higher temperatures. It starts from small islands of ?-Sn, the growth of which proceeds through an auto-catalytic reaction.
Quark-Gluon Plasma: Theoretical Foundations
Author: J. Kapusta
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850
Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850
Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.
Scale Relativity And Fractal Space-time: A New Approach To Unifying Relativity And Quantum Mechanics
Author: Laurent Nottale
Publisher: World Scientific
ISBN: 1908977876
Category : Science
Languages : en
Pages : 766
Book Description
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
Publisher: World Scientific
ISBN: 1908977876
Category : Science
Languages : en
Pages : 766
Book Description
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.