Running Regressions

Running Regressions PDF Author: Michelle C. Baddeley
Publisher: Cambridge University Press
ISBN: 9780521842112
Category : Business & Economics
Languages : en
Pages : 310

Get Book Here

Book Description
Running Regressions introduces first-year social science undergraduates, particularly those studying economics and business, to the practical aspects of simple regression analysis, without adopting an esoteric, mathematical approach. It shows that statistical analysis can be simultaneously straightforward, useful and interesting, and can deal with topical, real-world issues. Each chapter introduces an economic theory or idea by relating it to an issue of topical interest, and explains how data and econometric analysis can be used to test it. The book can be used as a self-standing text or to supplement conventional econometric texts. It is also ideally suited as a guide to essays and project work.

Running Regressions

Running Regressions PDF Author: Michelle C. Baddeley
Publisher: Cambridge University Press
ISBN: 9780521842112
Category : Business & Economics
Languages : en
Pages : 310

Get Book Here

Book Description
Running Regressions introduces first-year social science undergraduates, particularly those studying economics and business, to the practical aspects of simple regression analysis, without adopting an esoteric, mathematical approach. It shows that statistical analysis can be simultaneously straightforward, useful and interesting, and can deal with topical, real-world issues. Each chapter introduces an economic theory or idea by relating it to an issue of topical interest, and explains how data and econometric analysis can be used to test it. The book can be used as a self-standing text or to supplement conventional econometric texts. It is also ideally suited as a guide to essays and project work.

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Applied Linear Regression

Applied Linear Regression PDF Author: Sanford Weisberg
Publisher: John Wiley & Sons
ISBN: 1118625951
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.

Introductory Business Statistics 2e

Introductory Business Statistics 2e PDF Author: Alexander Holmes
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801

Get Book Here

Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Business Analysis Using Regression

Business Analysis Using Regression PDF Author: Robert A. Stine
Publisher: Springer Science & Business Media
ISBN: 1461206839
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Preface Statistics is seldom the most eagerly anticipated course of a business student. It typically has the reputation ofbeing aboring, complicated, and confusing mix of mathematical formulas and computers. Our goal in writing this casebook and the companion volume (Basic Business Statistics) was to change that impression by showing how statistics gives insights and answers interesting business questions. Rather than dwell on underlying formulas, we show how to use statistics to answer questions. Each case study begins with a business question and concludes with an answer. Formulas appear only as needed to address the questions, and we focus on the insights into the problem provided by the mathematics. The mathematics serves a purpose. The material is organized into 12 "classes" of related case studies that develop a single, key idea of statistics. The analysis of data using statistics is seldom very straightforward, and each analysis has many nuances. Part ofthe appeal ofstatistics is this richness, this blending of substantive theories and mathematics. For a newcomer, however, this blend is too rich and they are easily overwhelmed and unable to sort out the important ideas from nuances. Although later cases in these notes suggest this complexity, we do not begin that way. Each class has one main idea, something big like standard error. We begin a class by discussing an application chosen to motivate this key concept, and introduce the necessary terminology.

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Regression Analysis

Regression Analysis PDF Author: Ashish Sen
Publisher: Springer Science & Business Media
ISBN: 1461244706
Category : Psychology
Languages : en
Pages : 361

Get Book Here

Book Description
An up-to-date, rigorous, and lucid treatment of the theory, methods, and applications of regression analysis, and thus ideally suited for those interested in the theory as well as those whose interests lie primarily with applications. It is further enhanced through real-life examples drawn from many disciplines, showing the difficulties typically encountered in the practice of regression analysis. Consequently, this book provides a sound foundation in the theory of this important subject.

Regression Analysis

Regression Analysis PDF Author: Ashish K. Sen
Publisher: Springer
ISBN: 3662250926
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
Any method of fitting equations to data may be called regression. Such equations are valuable for at least two purposes: making predictions and judging the strength of relationships. Because they provide a way of em pirically identifying how a variable is affected by other variables, regression methods have become essential in a wide range of fields, including the soeial seiences, engineering, medical research and business. Of the various methods of performing regression, least squares is the most widely used. In fact, linear least squares regression is by far the most widely used of any statistical technique. Although nonlinear least squares is covered in an appendix, this book is mainly ab out linear least squares applied to fit a single equation (as opposed to a system of equations). The writing of this book started in 1982. Since then, various drafts have been used at the University of Toronto for teaching a semester-Iong course to juniors, seniors and graduate students in a number of fields, including statistics, pharmacology, pharmacology, engineering, economics, forestry and the behav ioral seiences. Parts of the book have also been used in a quarter-Iong course given to Master's and Ph.D. students in public administration, urban plan ning and engineering at the University of Illinois at Chicago (UIC). This experience and the comments and critieisms from students helped forge the final version.

Modern Regression Techniques Using R

Modern Regression Techniques Using R PDF Author: Daniel B Wright
Publisher: SAGE
ISBN: 1446206025
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.

Predictions in Time Series Using Regression Models

Predictions in Time Series Using Regression Models PDF Author: Cory Terrell
Publisher: Scientific e-Resources
ISBN: 1839473290
Category :
Languages : en
Pages : 299

Get Book Here

Book Description
Regression methods have been a necessary piece of time arrangement investigation for over a century. As of late, new advancements have made real walks in such territories as non-constant information where a direct model isn't fitting. This book acquaints the peruser with fresher improvements and more assorted regression models and methods for time arrangement examination. Open to any individual who knows about the fundamental present day ideas of factual deduction, Regression Models for Time Series Analysis gives a truly necessary examination of late measurable advancements. Essential among them is the imperative class of models known as summed up straight models (GLM) which gives, under a few conditions, a bound together regression hypothesis reasonable for constant, all out, and check information. The creators stretch out GLM methodology deliberately to time arrangement where the essential and covariate information are both arbitrary and stochastically reliant. They acquaint readers with different regression models created amid the most recent thirty years or somewhere in the vicinity and condense traditional and later outcomes concerning state space models.