Author: Simon L. Altmann
Publisher: Courier Corporation
ISBN: 0486445186
Category : Mathematics
Languages : en
Pages : 356
Book Description
This text presents a consistent description of the geometric and quaternionic treatment of rotation operators. Covers the fundamentals of symmetries, matrices, and groups and presents a primer on rotations and rotation matrices. Also explores rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, more. Includes problems with solutions.
Rotations, Quaternions, and Double Groups
Author: Simon L. Altmann
Publisher: Courier Corporation
ISBN: 0486445186
Category : Mathematics
Languages : en
Pages : 356
Book Description
This text presents a consistent description of the geometric and quaternionic treatment of rotation operators. Covers the fundamentals of symmetries, matrices, and groups and presents a primer on rotations and rotation matrices. Also explores rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, more. Includes problems with solutions.
Publisher: Courier Corporation
ISBN: 0486445186
Category : Mathematics
Languages : en
Pages : 356
Book Description
This text presents a consistent description of the geometric and quaternionic treatment of rotation operators. Covers the fundamentals of symmetries, matrices, and groups and presents a primer on rotations and rotation matrices. Also explores rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, more. Includes problems with solutions.
Rotations, Quaternions, and Double Groups
Author: Simon L. Altmann
Publisher: Courier Corporation
ISBN: 0486317730
Category : Mathematics
Languages : en
Pages : 315
Book Description
This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary.
Publisher: Courier Corporation
ISBN: 0486317730
Category : Mathematics
Languages : en
Pages : 315
Book Description
This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems. Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the geometry, topology, and algebra of rotations. Some familiarity with the basics of group theory is assumed, but the text assists students in developing the requisite mathematical tools as necessary.
Quaternions and Rotation Sequences
Author: J. B. Kuipers
Publisher: Princeton University Press
ISBN: 0691211701
Category : Mathematics
Languages : en
Pages : 396
Book Description
Ever since the Irish mathematician William Rowan Hamilton introduced quaternions in the nineteenth century--a feat he celebrated by carving the founding equations into a stone bridge--mathematicians and engineers have been fascinated by these mathematical objects. Today, they are used in applications as various as describing the geometry of spacetime, guiding the Space Shuttle, and developing computer applications in virtual reality. In this book, J. B. Kuipers introduces quaternions for scientists and engineers who have not encountered them before and shows how they can be used in a variety of practical situations. The book is primarily an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The volume is divided into three main parts. The opening chapters present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the final section, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality.
Publisher: Princeton University Press
ISBN: 0691211701
Category : Mathematics
Languages : en
Pages : 396
Book Description
Ever since the Irish mathematician William Rowan Hamilton introduced quaternions in the nineteenth century--a feat he celebrated by carving the founding equations into a stone bridge--mathematicians and engineers have been fascinated by these mathematical objects. Today, they are used in applications as various as describing the geometry of spacetime, guiding the Space Shuttle, and developing computer applications in virtual reality. In this book, J. B. Kuipers introduces quaternions for scientists and engineers who have not encountered them before and shows how they can be used in a variety of practical situations. The book is primarily an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The volume is divided into three main parts. The opening chapters present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the final section, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality.
Visualizing Quaternions
Author: Andrew J. Hanson
Publisher: Elsevier
ISBN: 0080474772
Category : Mathematics
Languages : en
Pages : 530
Book Description
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.
Publisher: Elsevier
ISBN: 0080474772
Category : Mathematics
Languages : en
Pages : 530
Book Description
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important—a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions. - Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing. - Covers both non-mathematical and mathematical approaches to quaternions.
Understanding Quaternions
Author: Peng Du
Publisher: Nova Science Publishers
ISBN: 9781536185539
Category : Mathematics
Languages : en
Pages : 197
Book Description
"Quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. They form an interesting algebra where each object contains 4 scalar variables, instead of Euler angles, which is useful to overcome the gimbal lock phenomenon when treating the rotation of objects. This book is about the mathematical basics and applications of quaternions. The first four chapters mainly concerns the mathematical theories, while the latter three chapters are related with three application aspects. It is expected to provide useful clues for researchers and engineers in the related area. In detail, this book is organized as follows: In Chapter 1, mathematical basics including the quaternion algebra and operations with quaternions, as well as the relationships of quaternions with other mathematical parameters and representations are demonstrated. In Chapter 2, how quaternions are formulated in Clifford Algebra, how it is used in explaining rotation group in symplectic vector space and parallel transformation in holonomic dynamics are presented. In Chapter 3, the wave equation for a spin 3/2 particle, described by 16-component vector-bispinor, is investigated in spherical coordinates. In Chapter 4, hyperbolic Lobachevsky and spherical Riemann models, parameterized coordinates with spherical and cylindric symmetry are studied. In Chapter 5, ship hydrodynamics with allowance of trim and sinkage is investigated and validated with experiments. In Chapter 6, the ballast flying phenomenon based on Discrete Discontinuous Analysis is presented. In Chapter 7, a numerical study is proposed to analyze the effect of the caisson sliding subjected to a hydrodynamic loading in the stability of the rear side of the rubble mound breakwater"--
Publisher: Nova Science Publishers
ISBN: 9781536185539
Category : Mathematics
Languages : en
Pages : 197
Book Description
"Quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. They form an interesting algebra where each object contains 4 scalar variables, instead of Euler angles, which is useful to overcome the gimbal lock phenomenon when treating the rotation of objects. This book is about the mathematical basics and applications of quaternions. The first four chapters mainly concerns the mathematical theories, while the latter three chapters are related with three application aspects. It is expected to provide useful clues for researchers and engineers in the related area. In detail, this book is organized as follows: In Chapter 1, mathematical basics including the quaternion algebra and operations with quaternions, as well as the relationships of quaternions with other mathematical parameters and representations are demonstrated. In Chapter 2, how quaternions are formulated in Clifford Algebra, how it is used in explaining rotation group in symplectic vector space and parallel transformation in holonomic dynamics are presented. In Chapter 3, the wave equation for a spin 3/2 particle, described by 16-component vector-bispinor, is investigated in spherical coordinates. In Chapter 4, hyperbolic Lobachevsky and spherical Riemann models, parameterized coordinates with spherical and cylindric symmetry are studied. In Chapter 5, ship hydrodynamics with allowance of trim and sinkage is investigated and validated with experiments. In Chapter 6, the ballast flying phenomenon based on Discrete Discontinuous Analysis is presented. In Chapter 7, a numerical study is proposed to analyze the effect of the caisson sliding subjected to a hydrodynamic loading in the stability of the rear side of the rubble mound breakwater"--
On Quaternions and Octonions
Author: John H. Conway
Publisher: CRC Press
ISBN: 1439864187
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less f
Publisher: CRC Press
ISBN: 1439864187
Category : Mathematics
Languages : en
Pages : 172
Book Description
This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less f
Shattered Symmetry
Author: Pieter Thyssen
Publisher: Oxford University Press
ISBN: 0190611391
Category : Mathematics
Languages : en
Pages : 529
Book Description
Symmetry is at the heart of our understanding of matter. This book tells the fascinating story of the constituents of matter from a common symmetry perspective. The standard model of elementary particles and the periodic table of chemical elements have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of Shattered Symmetry is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. Along the way the theory of symmetry groups is gradually introduced with special emphasis on its use as a classification tool and its graphical representations. This is applied to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires us to leave the common ground of linear algebras and explore the potential of non-linearity.
Publisher: Oxford University Press
ISBN: 0190611391
Category : Mathematics
Languages : en
Pages : 529
Book Description
Symmetry is at the heart of our understanding of matter. This book tells the fascinating story of the constituents of matter from a common symmetry perspective. The standard model of elementary particles and the periodic table of chemical elements have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of Shattered Symmetry is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. Along the way the theory of symmetry groups is gradually introduced with special emphasis on its use as a classification tool and its graphical representations. This is applied to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires us to leave the common ground of linear algebras and explore the potential of non-linearity.
Crystallography and Crystal Defects
Author: Anthony Kelly
Publisher: John Wiley & Sons
ISBN: 1119420172
Category : Science
Languages : en
Pages : 584
Book Description
The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of Crystallography and Crystal Defects explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. Fully revised and updated, this book now includes: Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level, Crystallography and Crystal Defects, Third Edition continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.
Publisher: John Wiley & Sons
ISBN: 1119420172
Category : Science
Languages : en
Pages : 584
Book Description
The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of Crystallography and Crystal Defects explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. Fully revised and updated, this book now includes: Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level, Crystallography and Crystal Defects, Third Edition continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.
The Geometry of the Octonions
Author: Tevian Dray
Publisher: World Scientific
ISBN: 981440182X
Category : Mathematics
Languages : en
Pages : 229
Book Description
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.Contents: Introduction"Number Systems: "The Geometry of the Complex NumbersThe Geometry of the QuaternionsThe Geometry of the OctonionsOther Number Systems"Symmetry Groups: "Some Orthogonal GroupsSome Unitary GroupsSome Symplectic GroupsSymmetry Groups over Other Division AlgebrasLie Groups and Lie AlgebrasThe Exceptional Groups"Applications: "Division Algebras in MathematicsOctonionic Eigenvalue ProblemsThe Physics of the OctonionsMagic Squares Readership: Advanced ubdergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background. Key Features: This book is easily digestible by a large audience wanting to know the elementary introduction to octanionsSuitable for any reader with a grasp of the complex numbers, although familiarity with non-octonionic versions of some of the other topics would be helpfulMany open problems are very accessibleAdvanced topics covered are quite sophisticated, leading up to a clear discussion of (one representation of) the exceptional Lie algebras and their associated root diagrams, and of the octonionic projective spaces on which they act
Publisher: World Scientific
ISBN: 981440182X
Category : Mathematics
Languages : en
Pages : 229
Book Description
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.Contents: Introduction"Number Systems: "The Geometry of the Complex NumbersThe Geometry of the QuaternionsThe Geometry of the OctonionsOther Number Systems"Symmetry Groups: "Some Orthogonal GroupsSome Unitary GroupsSome Symplectic GroupsSymmetry Groups over Other Division AlgebrasLie Groups and Lie AlgebrasThe Exceptional Groups"Applications: "Division Algebras in MathematicsOctonionic Eigenvalue ProblemsThe Physics of the OctonionsMagic Squares Readership: Advanced ubdergraduate and graduate students and faculty in mathematics and physics; non-experts with moderately sophisticated mathematics background. Key Features: This book is easily digestible by a large audience wanting to know the elementary introduction to octanionsSuitable for any reader with a grasp of the complex numbers, although familiarity with non-octonionic versions of some of the other topics would be helpfulMany open problems are very accessibleAdvanced topics covered are quite sophisticated, leading up to a clear discussion of (one representation of) the exceptional Lie algebras and their associated root diagrams, and of the octonionic projective spaces on which they act
Visualizing More Quaternions
Author: Andrew J. Hanson
Publisher: Elsevier
ISBN: 0323993907
Category : Mathematics
Languages : en
Pages : 602
Book Description
Visualizing More Quaternions, Volume Two updates on proteomics-related material that will be useful for biochemists and biophysicists, including material related to electron microscopy (and specifically cryo-EVisualizing. Dr. Andrew J. Hanson's groundbreaking book updates and extends concepts that have evolved since the first book published in 2005, adding entirely new insights that Dr. Hanson's research has recently developed. This includes the applications of quaternion methods to proteomics and molecular crystallography problems, which are domains with significant current research and application activity.In addition to readers interested in quaternions for their own sake, scientists involved in computer graphics, animation, shape modeling, and scientific visualization, and readers from several other disciplines will benefit from this new volume. Foremost among these, and the target of the first several chapters, are scientists involved in molecular chemistry where techniques based on quaternion eigensystems have become a standard tool for evaluating the quality of shape matching. - Establishes basic principles for visual display of quaternions and their applications. - Explores quaternion based approaches to the matching of point cloud pairs, including approaches to data from orthographic and perspective projections. - Develops extensive applications of quaternion frames to protein orientation analysis. - Analyzes the application of quaternion methods to physics problems ranging from quantum computing to special relativity and gravitational instantons.
Publisher: Elsevier
ISBN: 0323993907
Category : Mathematics
Languages : en
Pages : 602
Book Description
Visualizing More Quaternions, Volume Two updates on proteomics-related material that will be useful for biochemists and biophysicists, including material related to electron microscopy (and specifically cryo-EVisualizing. Dr. Andrew J. Hanson's groundbreaking book updates and extends concepts that have evolved since the first book published in 2005, adding entirely new insights that Dr. Hanson's research has recently developed. This includes the applications of quaternion methods to proteomics and molecular crystallography problems, which are domains with significant current research and application activity.In addition to readers interested in quaternions for their own sake, scientists involved in computer graphics, animation, shape modeling, and scientific visualization, and readers from several other disciplines will benefit from this new volume. Foremost among these, and the target of the first several chapters, are scientists involved in molecular chemistry where techniques based on quaternion eigensystems have become a standard tool for evaluating the quality of shape matching. - Establishes basic principles for visual display of quaternions and their applications. - Explores quaternion based approaches to the matching of point cloud pairs, including approaches to data from orthographic and perspective projections. - Develops extensive applications of quaternion frames to protein orientation analysis. - Analyzes the application of quaternion methods to physics problems ranging from quantum computing to special relativity and gravitational instantons.