Robotic Embodiment Developing a System for and Applications with Full Body Ownership of a Humanoid Robot

Robotic Embodiment Developing a System for and Applications with Full Body Ownership of a Humanoid Robot PDF Author: Sameer Kishore
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Get Book Here

Book Description
It has been shown that with appropriate multisensory stimulation an illusion of owning an artificial object as part of their own body can be induced in people. Such body ownership illusions have been shown to occur with artificial limbs, such as rubber hands, and even entire artificial or virtual bodies. Although extensive research has been carried out regarding full body ownership illusions with mannequins and virtual bodies, few studies exist that apply this concept to humanoid robots. On the other hand, extensive research has been carried out with robots in terms of telepresence and remote manipulation of the robot, known as teleoperation. Combining these concepts would give rise to a highly immersive, embodied experience in a humanoid robot located at a remote physical location, which holds great potential in terms of real-world applications. In this thesis, we aim to apply this phenomenon of full body ownership illusions in the context of humanoid robots, and to develop real-world applications where this technology could be beneficial. More specifically, by relying on knowledge gained from previous studies regarding body ownership illusions, we investigated whether it is possible to elicit this illusion with a humanoid robot. In addition, we developed a system in the context of telepresence robots, where the participant is embodied in a humanoid robot that is present in a different physical location, and can use this robotic body to interact with the remote environment. To test the functionality of the system and to gain an understanding of body ownership illusions with robots, we carried out two experimental studies and one case-study of a demonstration of the system as a real-world application. In the Brain-Computer Interface versus Eye Tracker study, we used our system to investigate whether it was possible to induce a full body ownership illusion over a humanoid robot with a highly ‘robotic' appearance. In addition, we compared two different abstract methods of control, a Steady-State Visually Evoked Potential (SSVEP) based Brain-Computer Interface and eye-tracking, in an immersive environment to drive the robot. This was done mainly as a motivation for developing a prototype of a system that could be used by disabled patients. Our results showed that a feeling of body ownership illusion and agency can be induced, even though the postures between participants and the embodied robot were incongruent (the participant was sitting, while the robot was standing). Additionally, both BCI and eye tracking were reported to be suitable methods of control, although the degree of body ownership illusion was influenced by the control method, with higher scores of ownership reported for the BCI condition. In the Tele-Immersive Journalism case study, we used the same system as above, but with the added capability of letting the participant control the robot body by moving their own body. Since in this case we provided synchronous visuomotor correlations with the robotic body we expected this to result in an even higher level of body ownership illusion. By making the robot body the source of their associated sensations we simulate a type of virtual teleportation. We applied this system successfully to the context of journalism, where a journalist could be embodied in a humanoid robot located in a remote destination and carry out interviews through their robotic body. We provide a case-study where the system was used by several journalists to report news about the system itself as well as for reporting other stories. In the Multi-Destination Beaming study, we extended the functionality of the system to include three destinations. The aim of the study was to investigate whether participants could cope with being in three places at same time, and embodied in three different surrogate bodies. We had two physical destinations with one robot in each, and a third virtual destination where the participant would be embodied in a virtual body. The results indicate that the system was physically and psychologically comfortable, and was rated highly by participants in terms of usability in real world. Additionally, high feelings of body ownership illusion and agency were reported, which were not influenced by the robot type. This provides us with clues regarding body ownership illusion with humanoid robots of different dimensions, along with insight about self-localisation and multilocation. Overall, our results show that it is possible to elicit a full body ownership illusion over humanoid robotic bodies. The studies presented here advance the current theoretical framework of body representation, agency and self-perception by providing information about various factors that may affect the illusion of body ownership, such as a highly robotic appearance of the artificial body, having indirect methods of control, or even being simultaneously embodied in three different bodies. Additionally, the setup described can also be used to great effect for highly immersive remote robotic embodiment applications, such as one demonstrated here in the field of journalism.

Whole-Body Control for Multi-Contact Balancing of Humanoid Robots

Whole-Body Control for Multi-Contact Balancing of Humanoid Robots PDF Author: Bernd Henze
Publisher: Springer Nature
ISBN: 3030872122
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
This book aims at providing algorithms for balance control of legged, torque-controlled humanoid robots. A humanoid robot normally uses the feet for locomotion. This paradigm is extended by addressing the challenge of multi-contact balancing, which allows a humanoid robot to exploit an arbitrary number of contacts for support. Using multiple contacts increases the size of the support polygon, which in turn leads to an increased robustness of the stance and to an increased kinematic workspace of the robot. Both are important features for facilitating a transition of humanoid robots from research laboratories to real-world applications, where they are confronted with multiple challenging scenarios, such as climbing stairs and ladders, traversing debris, handling heavy loads, or working in confined spaces. The distribution of forces and torques among the multiple contacts is a challenging aspect of the problem, which arises from the closed kinematic chain given by the robot and its environment.

Wearable Robotics

Wearable Robotics PDF Author: Jacob Rosen
Publisher: Academic Press
ISBN: 0128146605
Category : Science
Languages : en
Pages : 551

Get Book Here

Book Description
Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications

Human Modeling for Bio-Inspired Robotics

Human Modeling for Bio-Inspired Robotics PDF Author: Jun Ueda
Publisher: Academic Press
ISBN: 0128031522
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Human Modelling for Bio-inspired Robotics: Mechanical Engineering in Assistive Technologies presents the most cutting-edge research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications. Intended to provide researchers both in academia and industry with key content on which to base their developments, this book is organized and written by senior experts in their fields. Human Modeling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies offers a system-level investigation into human mechanisms that inspire the development of assistive technologies and humanoid robotics, including topics in modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation and integration. Each chapter is written by a subject expert and discusses its background, research challenges, key outcomes, application, and future trends. This book will be especially useful for academic and industry researchers in this exciting field, as well as graduate-level students to bring them up to speed with the latest technology in mechanical design and control aspects of the area. Previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing is assumed. Presents the most recent research outcomes in the area of mechanical and control aspects of human functions for macro-scale (human size) applications Covers background information and fundamental concepts of human modelling Includes modelling of anatomical, musculoskeletal, neural and cognitive systems, as well as motor skills, adaptation, integration, and safety issues Assumes previous knowledge of the fundamentals of kinematics, dynamics, control, and signal processing

Wearable Robots

Wearable Robots PDF Author: José L. Pons
Publisher: John Wiley & Sons
ISBN: 0470987650
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.

Embodiment and Co-Adaptation Through Human-Machine Interfaces: at the Border of Robotics, Neuroscience and Psychology

Embodiment and Co-Adaptation Through Human-Machine Interfaces: at the Border of Robotics, Neuroscience and Psychology PDF Author: Philipp Beckerle
Publisher: Frontiers Media SA
ISBN: 2889749258
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description


Embodiment in Socially Interactive Robots

Embodiment in Socially Interactive Robots PDF Author: Eric Deng
Publisher: Foundations and Trends (R) in Robotics
ISBN: 9781680835465
Category :
Languages : en
Pages : 118

Get Book Here

Book Description
Socially interactive robots provide entertainment, information, and/or assistance; this last category is typically encompassed by socially assistive robotics. In all cases, such robots can achieve their primary functions without performing functional physical work. This monograph reviews the existing work that explores the role of physical embodiment in socially interactive robots. This class consists of robots that are not only capable of engaging in social interaction with humans, but are using primarily their social capabilities to perform their desired functions. This monograph explores the embodiment hypothesis that physical embodiment has a measurable effect on performance and perception of social interactions in socially interactive robotics. It presents a thorough review of existing work and analyzes existing results and approaches to embodiment to determine the current state of the embodiment hypothesis. This monograph is a comprehensive and in depth overview of embodiment in socially interactive robots that is a starting point for researchers and students beginning their own research in the area.

A Designing of Humanoid Robot Hands in Endo Skeleton and Exoskeleton Styles

A Designing of Humanoid Robot Hands in Endo Skeleton and Exoskeleton Styles PDF Author: Ichiro Kawabuchi
Publisher:
ISBN: 9783902613004
Category :
Languages : en
Pages :

Get Book Here

Book Description
To contribute on the evaluative process of searching the appropriate designing paradigms as a mechanical engineer, I bring up in this paper some of my ideas about the robot hand design concretely. While the designs of my robot hands may seem to be filled with eccentric, vagarious and serendipitous ideas for some people, I believe they are practical outcomes of flexible ingenuity in mechanical designing, so that they can take on pre-programmed but robust actuating roles for helping the programmable but limited actuators, and realize higher total balance in mechatronics. At the same time, for examining their practicability, reasonability and inevitability through the eyes of many persons, it will need to establish a standard definition and evaluation items in kinematics, dynamics, control algorithms and so on, that can subsume almost all humanoid robots. Concretely, a standard formats would be prepared to sort and identify any robot system by filling it. The Fig. 1 and 2 show my small trial of comprehensive comparison under a standard definition in the robot hand kinematics. And I hope the worldwide collaboration, so that it will promote developments of many sophisticated mechanical and electric elements that are easy to be used by many engineers like me who want any help to concentrate on his/her special fields.

Sensor-based Robust Whole-body Control of Highly Dynamic Legged Humanoid Robots

Sensor-based Robust Whole-body Control of Highly Dynamic Legged Humanoid Robots PDF Author: Donghyun Kim (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 330

Get Book Here

Book Description
Industrial robots significantly improve the productivity of manufacturing operations performing various tasks rapidly, accurately, and repeatedly. It would be hard to imagine factories without robotic arms. At the same time, it is difficult to imagine human-centered robots maintaining infrastructure and providing care as they are not yet versatile enough. One important obstacle to the adoption of human-centered robots is their limited mobility. Legged humanoid robots represent an embodiment of a highly dexterous system which could provide human-like capabilities to boost automated services in human environments. Therefore this thesis is dedicated to investigate the sensor-based control of legged humanoids robots such that they can achieve versatile and high task performance. To tackle agility and robustness in legged humanoid robots, I have studied the dynamic whole-body motion control of these kind of robots, with special focus on dynamic locomotion in coordination with whole-body task capabilities. One of the unique aspects of this study is the enhancement of locomotion capabilities without compromising the robot's dexterity. Currently, existing locomotion techniques for legged systems are highly specialized and not adaptable to generic robotic structures with manipulation requirements. Here, we explore the robot's legged mobility without compromising its dexterity by utilizing a general-purpose whole-body controller (WBC), i.e. a control algorithm which can find a dynamically-consistent mapping from operational space tasks to joint torques. The use of a WBC is appealing due to its ability to coordinate multiple tasks for highly redundant robotic systems. As such, WBCs have been deployed recently for controlling humanoid robots. However, the use of WBCs for achieving highly dynamic sensor-based motions has been lacking, and our work addresses the technical problems of such and endeavor. Our research primarily focuses on employing WBCs for dynamic motion control of legged robots. The dynamic control of real robots requires both algorithmic developments and compre- hensive system analyses for real-time deployment, which covers a broad spectrum of components from motor-level control to high-level planners. Therefore, my studies include the algorithmic enhancement of WBCs, the development of locomotion planners, the analysis of real-time con- trollers, and the integration of state-estimators. The algorithmic theory and methods are verified in both simulation and various real systems.

Whole-Body Affordances for Humanoid Robots

Whole-Body Affordances for Humanoid Robots PDF Author: Peter Kaiser
Publisher:
ISBN: 9781013278549
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
The goal of this work is the development of a novel computational formalization of whole-body affordances which is suitable for the multimodal detection and validation of interaction possibilities in unknown environments. The hierarchical framework allows the consistent fusion of affordance-related evidence and can be utilized for realizing shared autonomous control of humanoid robots. The affordance formalization is evaluated in several experiments in simulation and on real humanoid robots. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.