Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A-Posteriori Methods

Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A-Posteriori Methods PDF Author: Christian Nolde
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832544534
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
The use of rigorous numerical methods to approach problems which can not be solved using standard methods (yet) has increased signifiantly in recent years. In this book, riogorous a-posteriori methods are used to study the time evolution of a surface growth model, given by a fourth order semi-linear parabolic partial differential equation, where standard methods fail to verify global uniqueness and smoothness of solutions. Based on an arbitrary numerical approximation, a-posteriori error-analysis is applied in order to prevent a blow up analytically. This is a method that in a similar way also applies to the three dimensional Navier-Stokes equations. The main idea consists of energy-estimates for the error between solution and approximation that yields a scalar differential equation controlling the norm of the error with coefficients depending solely on the numerical data. This allows the solution of the differential equation to be bounded using only numerical data. A key technical tool is a rigorous eigenvalue bound for the nonlinear operator linearized around the numerical approximation. The presented method succeeds to show global uniqueness for relatively large initial conditions, which is demonstrated in many numerical examples.

Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A-Posteriori Methods

Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A-Posteriori Methods PDF Author: Christian Nolde
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832544534
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
The use of rigorous numerical methods to approach problems which can not be solved using standard methods (yet) has increased signifiantly in recent years. In this book, riogorous a-posteriori methods are used to study the time evolution of a surface growth model, given by a fourth order semi-linear parabolic partial differential equation, where standard methods fail to verify global uniqueness and smoothness of solutions. Based on an arbitrary numerical approximation, a-posteriori error-analysis is applied in order to prevent a blow up analytically. This is a method that in a similar way also applies to the three dimensional Navier-Stokes equations. The main idea consists of energy-estimates for the error between solution and approximation that yields a scalar differential equation controlling the norm of the error with coefficients depending solely on the numerical data. This allows the solution of the differential equation to be bounded using only numerical data. A key technical tool is a rigorous eigenvalue bound for the nonlinear operator linearized around the numerical approximation. The presented method succeeds to show global uniqueness for relatively large initial conditions, which is demonstrated in many numerical examples.

Micropolar Fluids

Micropolar Fluids PDF Author: Grzegorz Lukaszewicz
Publisher: Springer Science & Business Media
ISBN: 1461206413
Category : Technology & Engineering
Languages : en
Pages : 262

Get Book Here

Book Description
Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.

Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Variational Analysis

Variational Analysis PDF Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747

Get Book Here

Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

A Course on Rough Paths

A Course on Rough Paths PDF Author: Peter K. Friz
Publisher: Springer Nature
ISBN: 3030415562
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than ItĂ´-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH

Introduction to PDEs and Waves for the Atmosphere and Ocean

Introduction to PDEs and Waves for the Atmosphere and Ocean PDF Author: Andrew Majda
Publisher: American Mathematical Soc.
ISBN: 9780821829547
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
Written by a leading specialist in the area of atmosphere/ocean science (AOS), the book presents an excellent introduction to this important topic. The goals of these lecture notes, based on courses presented by the author at the Courant Institute of Mathematical Sciences, are to introduce mathematicians to the fascinating and important area of atmosphere/ocean science (AOS) and, conversely, to develop a mathematical viewpoint on basic topics in AOS of interest to the disciplinary AOS community, ranging from graduate students to researchers. The lecture notes emphasize the serendipitous connections between applied mathematics and geophysical flows in the style of modern applied mathematics, where rigorous mathematical analysis as well as asymptotic, qualitative, and numerical modeling all interact to ease the understanding of physical phenomena. Reading these lecture notes does not require a previous course in fluid dynamics, although a serious reader should supplement these notes with material such The book is intended for graduate students and researchers working in interdisciplinary areas between mathematics and AOS. It is excellent for supplementary course reading or independent study.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Optimization by Vector Space Methods

Optimization by Vector Space Methods PDF Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Numerical Techniques for Global Atmospheric Models

Numerical Techniques for Global Atmospheric Models PDF Author: Peter H. Lauritzen
Publisher: Springer Science & Business Media
ISBN: 364211640X
Category : Mathematics
Languages : en
Pages : 570

Get Book Here

Book Description
This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.