Computational Methods in Molecular Biology

Computational Methods in Molecular Biology PDF Author: S.L. Salzberg
Publisher: Elsevier
ISBN: 0080860931
Category : Computers
Languages : en
Pages : 399

Get Book Here

Book Description
Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is growing every day. These algorithms are extremely valuable to biotechnology companies and to researchers and teachers in universities. This book explains the latest computer technology for analyzing DNA, RNA, and protein sequences. Clear and easy to follow, designed specifically for the non-computer scientist, it will help biologists make better choices on which algorithm to use. New techniques and demonstrations are elucidated, as are state-of-the-art problems, and more advanced material on the latest algorithms. The primary audience for this volume are molecular biologists working either in biotechnology companies or academic research environments, individual researchers and the institutions they work for, and students. Any biologist who relies on computers should want this book. A secondary audience will be computer scientists developing techniques with applications in biology. An excellent reference for leading techniques, it will also help introduce computer scientists to the biology problems. This is an outstanding work which will be ideal for the increasing number of scientists moving into computational biology.

Computational Methods in Molecular Biology

Computational Methods in Molecular Biology PDF Author: S.L. Salzberg
Publisher: Elsevier
ISBN: 0080860931
Category : Computers
Languages : en
Pages : 399

Get Book Here

Book Description
Computational biology is a rapidly expanding field, and the number and variety of computational methods used for DNA and protein sequence analysis is growing every day. These algorithms are extremely valuable to biotechnology companies and to researchers and teachers in universities. This book explains the latest computer technology for analyzing DNA, RNA, and protein sequences. Clear and easy to follow, designed specifically for the non-computer scientist, it will help biologists make better choices on which algorithm to use. New techniques and demonstrations are elucidated, as are state-of-the-art problems, and more advanced material on the latest algorithms. The primary audience for this volume are molecular biologists working either in biotechnology companies or academic research environments, individual researchers and the institutions they work for, and students. Any biologist who relies on computers should want this book. A secondary audience will be computer scientists developing techniques with applications in biology. An excellent reference for leading techniques, it will also help introduce computer scientists to the biology problems. This is an outstanding work which will be ideal for the increasing number of scientists moving into computational biology.

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
A detailed overview of current research in kernel methods and their application to computational biology.

Algorithms in Structural Molecular Biology

Algorithms in Structural Molecular Biology PDF Author: Bruce R. Donald
Publisher: MIT Press
ISBN: 0262548798
Category : Science
Languages : en
Pages : 497

Get Book Here

Book Description
An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.

Research in Computational Molecular Biology

Research in Computational Molecular Biology PDF Author: Vineet Bafna
Publisher: Springer
ISBN: 3642200362
Category : Computers
Languages : en
Pages : 595

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 15th Annual International Conference on Research in Computational Molecular Biology, RECOMB 2011, held in Vancouver, Canada, in March 2011. The 43 revised full papers were carefully reviewed and selected from 153 submissions. The papers cover a wide range of topics including molecular sequence analysis; recognition of genes and regulatory elements; molecular evolution; gene expression; biological networks; sequencing and genotyping technologies; genomics; population, statistical genetics; systems biology; imaging; computational proteomics; molecular structural biology.

Computational Molecular Biology

Computational Molecular Biology PDF Author: Peter Clote
Publisher: Wiley
ISBN: 9780471872528
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Recently molecular biology has undergone unprecedented developmentgenerating vast quantities of data needing sophisticatedcomputational methods for analysis, processing and archiving. Thisrequirement has given birth to the truly interdisciplinary field ofcomputational biology, or bioinformatics, a subject reliant on boththeoretical and practical contributions from statistics,mathematics, computer science and biology. * Provides the background mathematics required to understand whycertain algorithms work * Guides the reader through probability theory, entropy andcombinatorial optimization * In-depth coverage of molecular biology and protein structureprediction * Includes several less familiar algorithms such as DNAsegmentation, quartet puzzling and DNA strand separationprediction * Includes class tested exercises useful for self-study * Source code of programs available on a Web site Primarily aimed at advanced undergraduate and graduate studentsfrom bioinformatics, computer science, statistics, mathematics andthe biological sciences, this text will also interest researchersfrom these fields.

Algorithms in Computational Molecular Biology

Algorithms in Computational Molecular Biology PDF Author: Mourad Elloumi
Publisher: John Wiley & Sons
ISBN: 1118101987
Category : Science
Languages : en
Pages : 1027

Get Book Here

Book Description
This book represents the most comprehensive and up-to-date collection of information on the topic of computational molecular biology. Bringing the most recent research into the forefront of discussion, Algorithms in Computational Molecular Biology studies the most important and useful algorithms currently being used in the field, and provides related problems. It also succeeds where other titles have failed, in offering a wide range of information from the introductory fundamentals right up to the latest, most advanced levels of study.

Learning and Inference in Computational Systems Biology

Learning and Inference in Computational Systems Biology PDF Author: Neil D. Lawrence
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 384

Get Book Here

Book Description
Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon

Handbook of Research on Computational and Systems Biology

Handbook of Research on Computational and Systems Biology PDF Author: Limin Angela Liu
Publisher: IGI Global
ISBN: 9781609604912
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
"This book offers information on the state-of-the-art development in the fields of computational biology and systems biology, presenting methods, tools, and applications of these fields by many leading experts around the globe"--Provided by publisher.

Computational Molecular Evolution

Computational Molecular Evolution PDF Author: Ziheng Yang
Publisher: Oxford University Press, USA
ISBN: 0198566999
Category : Medical
Languages : en
Pages : 374

Get Book Here

Book Description
This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.

An Introduction to Bioinformatics Algorithms

An Introduction to Bioinformatics Algorithms PDF Author: Neil C. Jones
Publisher: MIT Press
ISBN: 9780262101066
Category : Computers
Languages : en
Pages : 460

Get Book Here

Book Description
An introductory text that emphasizes the underlying algorithmic ideas that are driving advances in bioinformatics. This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems. The book introduces biological and algorithmic ideas together, linking issues in computer science to biology and thus capturing the interest of students in both subjects. It demonstrates that relatively few design techniques can be used to solve a large number of practical problems in biology, and presents this material intuitively. An Introduction to Bioinformatics Algorithms is one of the first books on bioinformatics that can be used by students at an undergraduate level. It includes a dual table of contents, organized by algorithmic idea and biological idea; discussions of biologically relevant problems, including a detailed problem formulation and one or more solutions for each; and brief biographical sketches of leading figures in the field. These interesting vignettes offer students a glimpse of the inspirations and motivations for real work in bioinformatics, making the concepts presented in the text more concrete and the techniques more approachable.PowerPoint presentations, practical bioinformatics problems, sample code, diagrams, demonstrations, and other materials can be found at the Author's website.