Author: Raman K. Attri
Publisher: Speed To Proficiency Research: S2Pro©
ISBN: 9811197636
Category : Science
Languages : en
Pages : 160
Book Description
This book is a collection of seven in-depth and detailed research papers authored by Dr. Raman K Attri between 1996 to 2005. The book presents early-career scientific work by the author as a scientist at a research organization. The book provides the conceptual background and key electronics and mechanical design principles used in designing sensors and instrumentation systems to measure snow hydrological parameters. The systems discussed in this book can be used to measure snow depth, layer temperature, temperature distribution profile, surface porosity, etc. The snow parameters measured from instruments and sensors discussed in this book are integrated into larger systems and are used in computer-driven models for snow avalanche predictions. The book presents the design challenges and design methods from electronics and instrumentation design point of view. While the book provides essential understanding of analog electronics design and associated mechanical design for snow hydrological sensors, the book also presents the background theoretical and mathematical models from snow hydrology physics that governs this electronics design. The first research paper discusses the design control techniques used to the design a remote surface detector to detect objects with porous, uneven, irregular surfaces like snow using ultrasonic beams. The second research paper describes signal processing techniques and electronics design approaches to design a snow depth sensor with improved sensitivity and directional response using Ultrasonic Pulse-Transit Method. The third research paper explains theoretical and mathematical model that governs the physical, mechanical, and electronics design to implement the theory of Arrayed Ultrasonic transducers to shape up the directional response and beam width of an ultrasonic beam to improve the chances of receiving sufficient reflection from the non-smooth, highly porous, uneven, non-planar, irregular snow surface. The fourth paper presents the design considerations and performance characteristics of Snow Temperature Profile Sensing System used to measure the temperature gradient and temperature distributions within and outside the snowpack at different depths. The fifth research paper focuses on describing the design of Snow Temperature Profile Sensing System in details and discusses the theoretical and mathematical model that outline important temperature parameters. Then the paper describes how the system is implemented to record or measure those parameters. The sixth paper presents the design considerations, constraints and design techniques used to use RTD temperature sensors for snow temperature measurement applications. The paper also presents the performance evaluation and suitability of such sensors. The seventh paper focuses design techniques for front-end analog signal conditioning module and the design challenges faced when interfacing analog unit to a data acquisition system. The eighth paper describes the design of snow air temperature sensing probe and methods to ensure that it measures true air temperature over a snow cover and is not influenced by solar radiations and winds. The book may be read as an applied text-book in conjunction with standard electronics and instrumentation design textbooks. The book will guide students on how to apply basic principles of instrumentation systems design, integrate concepts of physical sciences and measurement sciences for the field applications.
Research and Design of Snow Hydrology Sensors and Instrumentation
Author: Raman K. Attri
Publisher: Speed To Proficiency Research: S2Pro©
ISBN: 9811197636
Category : Science
Languages : en
Pages : 160
Book Description
This book is a collection of seven in-depth and detailed research papers authored by Dr. Raman K Attri between 1996 to 2005. The book presents early-career scientific work by the author as a scientist at a research organization. The book provides the conceptual background and key electronics and mechanical design principles used in designing sensors and instrumentation systems to measure snow hydrological parameters. The systems discussed in this book can be used to measure snow depth, layer temperature, temperature distribution profile, surface porosity, etc. The snow parameters measured from instruments and sensors discussed in this book are integrated into larger systems and are used in computer-driven models for snow avalanche predictions. The book presents the design challenges and design methods from electronics and instrumentation design point of view. While the book provides essential understanding of analog electronics design and associated mechanical design for snow hydrological sensors, the book also presents the background theoretical and mathematical models from snow hydrology physics that governs this electronics design. The first research paper discusses the design control techniques used to the design a remote surface detector to detect objects with porous, uneven, irregular surfaces like snow using ultrasonic beams. The second research paper describes signal processing techniques and electronics design approaches to design a snow depth sensor with improved sensitivity and directional response using Ultrasonic Pulse-Transit Method. The third research paper explains theoretical and mathematical model that governs the physical, mechanical, and electronics design to implement the theory of Arrayed Ultrasonic transducers to shape up the directional response and beam width of an ultrasonic beam to improve the chances of receiving sufficient reflection from the non-smooth, highly porous, uneven, non-planar, irregular snow surface. The fourth paper presents the design considerations and performance characteristics of Snow Temperature Profile Sensing System used to measure the temperature gradient and temperature distributions within and outside the snowpack at different depths. The fifth research paper focuses on describing the design of Snow Temperature Profile Sensing System in details and discusses the theoretical and mathematical model that outline important temperature parameters. Then the paper describes how the system is implemented to record or measure those parameters. The sixth paper presents the design considerations, constraints and design techniques used to use RTD temperature sensors for snow temperature measurement applications. The paper also presents the performance evaluation and suitability of such sensors. The seventh paper focuses design techniques for front-end analog signal conditioning module and the design challenges faced when interfacing analog unit to a data acquisition system. The eighth paper describes the design of snow air temperature sensing probe and methods to ensure that it measures true air temperature over a snow cover and is not influenced by solar radiations and winds. The book may be read as an applied text-book in conjunction with standard electronics and instrumentation design textbooks. The book will guide students on how to apply basic principles of instrumentation systems design, integrate concepts of physical sciences and measurement sciences for the field applications.
Publisher: Speed To Proficiency Research: S2Pro©
ISBN: 9811197636
Category : Science
Languages : en
Pages : 160
Book Description
This book is a collection of seven in-depth and detailed research papers authored by Dr. Raman K Attri between 1996 to 2005. The book presents early-career scientific work by the author as a scientist at a research organization. The book provides the conceptual background and key electronics and mechanical design principles used in designing sensors and instrumentation systems to measure snow hydrological parameters. The systems discussed in this book can be used to measure snow depth, layer temperature, temperature distribution profile, surface porosity, etc. The snow parameters measured from instruments and sensors discussed in this book are integrated into larger systems and are used in computer-driven models for snow avalanche predictions. The book presents the design challenges and design methods from electronics and instrumentation design point of view. While the book provides essential understanding of analog electronics design and associated mechanical design for snow hydrological sensors, the book also presents the background theoretical and mathematical models from snow hydrology physics that governs this electronics design. The first research paper discusses the design control techniques used to the design a remote surface detector to detect objects with porous, uneven, irregular surfaces like snow using ultrasonic beams. The second research paper describes signal processing techniques and electronics design approaches to design a snow depth sensor with improved sensitivity and directional response using Ultrasonic Pulse-Transit Method. The third research paper explains theoretical and mathematical model that governs the physical, mechanical, and electronics design to implement the theory of Arrayed Ultrasonic transducers to shape up the directional response and beam width of an ultrasonic beam to improve the chances of receiving sufficient reflection from the non-smooth, highly porous, uneven, non-planar, irregular snow surface. The fourth paper presents the design considerations and performance characteristics of Snow Temperature Profile Sensing System used to measure the temperature gradient and temperature distributions within and outside the snowpack at different depths. The fifth research paper focuses on describing the design of Snow Temperature Profile Sensing System in details and discusses the theoretical and mathematical model that outline important temperature parameters. Then the paper describes how the system is implemented to record or measure those parameters. The sixth paper presents the design considerations, constraints and design techniques used to use RTD temperature sensors for snow temperature measurement applications. The paper also presents the performance evaluation and suitability of such sensors. The seventh paper focuses design techniques for front-end analog signal conditioning module and the design challenges faced when interfacing analog unit to a data acquisition system. The eighth paper describes the design of snow air temperature sensing probe and methods to ensure that it measures true air temperature over a snow cover and is not influenced by solar radiations and winds. The book may be read as an applied text-book in conjunction with standard electronics and instrumentation design textbooks. The book will guide students on how to apply basic principles of instrumentation systems design, integrate concepts of physical sciences and measurement sciences for the field applications.
Earth Resources
Author:
Publisher:
ISBN:
Category : Astronautics in earth sciences
Languages : en
Pages : 758
Book Description
Publisher:
ISBN:
Category : Astronautics in earth sciences
Languages : en
Pages : 758
Book Description
Water Resources Research Catalog
Author:
Publisher:
ISBN:
Category : Water resources development
Languages : en
Pages : 1464
Book Description
Publisher:
ISBN:
Category : Water resources development
Languages : en
Pages : 1464
Book Description
Extreme Hydrology and Climate Variability
Author: Assefa Melesse
Publisher: Elsevier
ISBN: 0128159995
Category : Science
Languages : en
Pages : 584
Book Description
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Publisher: Elsevier
ISBN: 0128159995
Category : Science
Languages : en
Pages : 584
Book Description
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
SIPRE Report
Author:
Publisher:
ISBN:
Category : Frozen ground
Languages : en
Pages : 250
Book Description
Publisher:
ISBN:
Category : Frozen ground
Languages : en
Pages : 250
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 316
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 316
Book Description
Selected Water Resources Abstracts
Author:
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 504
Book Description
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 504
Book Description
Remote Sensing of Earth Resources
Author: NASA Scientific and Technical Information Facility
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 622
Book Description
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 622
Book Description
Integrating Multiscale Observations of U.S. Waters
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309114578
Category : Science
Languages : en
Pages : 210
Book Description
Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.
Publisher: National Academies Press
ISBN: 0309114578
Category : Science
Languages : en
Pages : 210
Book Description
Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.
World Weather Program
Author:
Publisher:
ISBN:
Category : Global Weather Experiment Project
Languages : en
Pages : 364
Book Description
Publisher:
ISBN:
Category : Global Weather Experiment Project
Languages : en
Pages : 364
Book Description