Representations of Hecke Algebras at Roots of Unity

Representations of Hecke Algebras at Roots of Unity PDF Author: Meinolf Geck
Publisher: Springer Science & Business Media
ISBN: 0857297163
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James' (1970) "characteristic-free'' approach to the representation theory of Iwahori-Hecke algebras in general. Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras. The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki's theorem, the combinatorics of crystal bases, the theory of Kazhdan-Lusztig bases and cells, and computational methods. This book will be of use to researchers and graduate students in representation theory as well as any researchers outside of the field with an interest in Hecke algebras.

Representations of Hecke Algebras at Roots of Unity

Representations of Hecke Algebras at Roots of Unity PDF Author: Meinolf Geck
Publisher: Springer Science & Business Media
ISBN: 0857297163
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James' (1970) "characteristic-free'' approach to the representation theory of Iwahori-Hecke algebras in general. Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras. The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki's theorem, the combinatorics of crystal bases, the theory of Kazhdan-Lusztig bases and cells, and computational methods. This book will be of use to researchers and graduate students in representation theory as well as any researchers outside of the field with an interest in Hecke algebras.

Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group

Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group PDF Author: Andrew Mathas
Publisher: American Mathematical Soc.
ISBN: 0821819267
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the $q$-Schur algebras. This book is the first of its kind covering the topic. It offers a substantially simplified treatment of the original proofs. The book is a solid reference source for experts. It will also serve as a good introduction to students and beginning researchers since each chapter contains exercises and there is an appendix containing a quick development of the representation theory of algebras. A second appendix gives tables of decomposition numbers.

Infinite-Dimensional Aspects of Representation Theory and Applications

Infinite-Dimensional Aspects of Representation Theory and Applications PDF Author: Stephen Berman
Publisher: American Mathematical Soc.
ISBN: 082183701X
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The University of Virginia (Charlottesville) hosted an international conference on Infinite-dimensional Aspects of Representation Theory and Applications. This volume contains papers resulting from the mini-courses and talks given at the meeting. Beyond the techniques and ideas related to representation theory, the book demonstrates connections to number theory, algebraic geometry, and mathematical physics. The specific topics covered include Hecke algebras, quantum groups, infinite-dimensional Lie algebras, quivers, modular representations, and Gromov-Witten invariants. The book is suitable for graduate students and researchers interested in representation theory.

Representations of Quantum Algebras and Combinatorics of Young Tableaux

Representations of Quantum Algebras and Combinatorics of Young Tableaux PDF Author: Susumu Ariki
Publisher: American Mathematical Soc.
ISBN: 0821832328
Category : Mathematics
Languages : en
Pages : 169

Get Book Here

Book Description
This book contains most of the nonstandard material necessary to get acquainted with this new rapidly developing area. It can be used as a good entry point into the study of representations of quantum groups. Among several tools used in studying representations of quantum groups (or quantum algebras) are the notions of Kashiwara's crystal bases and Lusztig's canonical bases. Mixing both approaches allows us to use a combinatorial approach to representations of quantum groups and toapply the theory to representations of Hecke algebras. The primary goal of this book is to introduce the representation theory of quantum groups using quantum groups of type $A {r-1 {(1) $ as a main example. The corresponding combinatorics, developed by Misra and Miwa, turns out to be thecombinatorics of Young tableaux. The second goal of this book is to explain the proof of the (generalized) Leclerc-Lascoux-Thibon conjecture. This conjecture, which is now a theorem, is an important breakthrough in the modular representation theory of the Hecke algebras of classical type. The book is suitable for graduate students and research mathematicians interested in representation theory of algebraic groups and quantum groups, the theory of Hecke algebras, algebraic combinatorics, andrelated fields.

Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry PDF Author: Vlastimil Dlab
Publisher: American Mathematical Soc.
ISBN: 9780821871454
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.

Representations of Algebraic Groups, Quantum Groups, and Lie Algebras

Representations of Algebraic Groups, Quantum Groups, and Lie Algebras PDF Author: Georgia Benkart
Publisher: American Mathematical Soc.
ISBN: 0821839241
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Covers various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. This book outlines connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic.

Group Representation Theory

Group Representation Theory PDF Author: Meinolf Geck
Publisher: EPFL Press
ISBN: 9780849392436
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
After the pioneering work of Brauer in the middle of the 20th century in the area of the representation theory of groups, many entirely new developments have taken place and the field has grown into a very large field of study. This progress, and the remaining open problems (e.g., the conjectures of Alterin, Dade, Broué, James, etc.) have ensured that group representation theory remains a lively area of research. In this book, the leading researchers in the field contribute a chapter in their field of specialty, namely: Broué (Finite reductive groups and spetses); Carlson (Cohomology and representations of finite groups); Geck (Representations of Hecke algebras); Seitz (Topics in algebraic groups); Kessar and Linckelmann (Fusion systems and blocks); Serre (On finite subgroups of Lie groups); Thévenaz (The classification of endo-permutaion modules); and Webb (Representations and cohomology of categories).

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups PDF Author: Akihiko Gyoja
Publisher: Springer Science & Business Media
ISBN: 0817646973
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

Representations of Groups

Representations of Groups PDF Author: Bruce Normansell Allison
Publisher: American Mathematical Soc.
ISBN: 9780821803110
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.

Categorification and Higher Representation Theory

Categorification and Higher Representation Theory PDF Author: Anna Beliakova
Publisher: American Mathematical Soc.
ISBN: 1470424606
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse techniques that are being employed in this field with the aim of showcasing the many applications of higher representation theory. The companion volume (Contemporary Mathematics, Volume 684) is devoted to categorification in geometry, topology, and physics.