Author: A. Cazenave
Publisher: Springer
ISBN: 3319324497
Category : Science
Languages : en
Pages : 336
Book Description
This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives.Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of the water balance of large river basins on time scales ranging from months to decades: satellite altimetry routinely monitors water level changes in large rivers, lakes and floodplains. When combined with satellite imagery, this technique can also measure surface water volume variations. Passive and active microwave sensors offer important information on soil moisture (e.g. the SMOS mission) as well as wetlands and snowpack. The GRACE space gravity mission offers, for the first time, the possibility of directly measuring spatio-temporal variations in the total vertically integrated terrestrial water storage. When combined with other space observations (e.g. from satellite altimetry and SMOS) or model estimates of surface waters and soil moisture, space gravity data can effectively measure groundwater storage variations. New satellite missions, planned for the coming years, will complement the constellation of satellites monitoring waters on land. This is particularly the case for the SWOT mission, which is expected to revolutionize land surface hydrology. Previously published in Surveys in Geophysics, Volume 37, No. 2, 2016
Remote Sensing and Water Resources
Author: A. Cazenave
Publisher: Springer
ISBN: 3319324497
Category : Science
Languages : en
Pages : 336
Book Description
This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives.Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of the water balance of large river basins on time scales ranging from months to decades: satellite altimetry routinely monitors water level changes in large rivers, lakes and floodplains. When combined with satellite imagery, this technique can also measure surface water volume variations. Passive and active microwave sensors offer important information on soil moisture (e.g. the SMOS mission) as well as wetlands and snowpack. The GRACE space gravity mission offers, for the first time, the possibility of directly measuring spatio-temporal variations in the total vertically integrated terrestrial water storage. When combined with other space observations (e.g. from satellite altimetry and SMOS) or model estimates of surface waters and soil moisture, space gravity data can effectively measure groundwater storage variations. New satellite missions, planned for the coming years, will complement the constellation of satellites monitoring waters on land. This is particularly the case for the SWOT mission, which is expected to revolutionize land surface hydrology. Previously published in Surveys in Geophysics, Volume 37, No. 2, 2016
Publisher: Springer
ISBN: 3319324497
Category : Science
Languages : en
Pages : 336
Book Description
This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives.Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of the water balance of large river basins on time scales ranging from months to decades: satellite altimetry routinely monitors water level changes in large rivers, lakes and floodplains. When combined with satellite imagery, this technique can also measure surface water volume variations. Passive and active microwave sensors offer important information on soil moisture (e.g. the SMOS mission) as well as wetlands and snowpack. The GRACE space gravity mission offers, for the first time, the possibility of directly measuring spatio-temporal variations in the total vertically integrated terrestrial water storage. When combined with other space observations (e.g. from satellite altimetry and SMOS) or model estimates of surface waters and soil moisture, space gravity data can effectively measure groundwater storage variations. New satellite missions, planned for the coming years, will complement the constellation of satellites monitoring waters on land. This is particularly the case for the SWOT mission, which is expected to revolutionize land surface hydrology. Previously published in Surveys in Geophysics, Volume 37, No. 2, 2016
Research Perspectives in Hydraulics and Water Resources Engineering
Author: Rama Prasad
Publisher: World Scientific
ISBN: 9810249292
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Contains ten state-of-the-art review articles on selected topics in hydraulics/fluid mechanics and water resources engineering.
Publisher: World Scientific
ISBN: 9810249292
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Contains ten state-of-the-art review articles on selected topics in hydraulics/fluid mechanics and water resources engineering.
Earth Observation for Water Resources Management
Author: Luis GarcĂa
Publisher: World Bank Publications
ISBN: 1464804761
Category : Nature
Languages : en
Pages : 267
Book Description
Water systems are building blocks for poverty alleviation, shared growth, sustainable development, and green growth strategies. They require data from in-situ observation networks. Budgetary and other constraints have taken a toll on their operation and there are many regions in the world where the data are scarce or unreliable. Increasingly, remote sensing satellite-based earth observation is becoming an alternative. This book briefly describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It describes eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. Earth Observation for Water Resources Management provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem at hand and suitable data sources to consider if so. The book concludes with a review of the literature on reliability statistics of remote-sensed estimations.
Publisher: World Bank Publications
ISBN: 1464804761
Category : Nature
Languages : en
Pages : 267
Book Description
Water systems are building blocks for poverty alleviation, shared growth, sustainable development, and green growth strategies. They require data from in-situ observation networks. Budgetary and other constraints have taken a toll on their operation and there are many regions in the world where the data are scarce or unreliable. Increasingly, remote sensing satellite-based earth observation is becoming an alternative. This book briefly describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It describes eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. Earth Observation for Water Resources Management provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem at hand and suitable data sources to consider if so. The book concludes with a review of the literature on reliability statistics of remote-sensed estimations.
Geospatial Technologies for Land and Water Resources Management
Author: Ashish Pandey
Publisher: Springer Nature
ISBN: 3030904792
Category : Computers
Languages : en
Pages : 617
Book Description
This book focuses on the application of geospatial technologies to study the land use land cover (LULC) dynamics, agricultural water management, water resources assessment and modeling, and studies on natural disasters. LULC dynamics is one of the major research themes for studying global environmental change using remote sensing data. The section on LULC dynamics covers the multi-variate criteria for land use and land cover classification and change assessment in the mountainous regions. Further, LULC change detection of the Tons river basin and LULC dynamics at decadal frequency are studied to derive adaptation and mitigation strategies. Landscape-level forest disturbance modeling, together with conservation implications, is also included. The watershed management approach is necessary for comprehensive management of land and water resources of any region, where studies on multi-criteria analysis for rainwater harvesting planning and its impact on land use land cover transformations in rain-fed areas using geospatial technologies are presented in this book. The book will be useful for academics, water practitioners, scientists, water managers, environmentalists, and administrators, NGOs, researchers, and students who are actively involved in the application of geospatial technologies in LULC studies, agricultural water management and hydrological modelling and natural disasters for addressing the challenges being posed by climate change while addressing issues of food and water securities
Publisher: Springer Nature
ISBN: 3030904792
Category : Computers
Languages : en
Pages : 617
Book Description
This book focuses on the application of geospatial technologies to study the land use land cover (LULC) dynamics, agricultural water management, water resources assessment and modeling, and studies on natural disasters. LULC dynamics is one of the major research themes for studying global environmental change using remote sensing data. The section on LULC dynamics covers the multi-variate criteria for land use and land cover classification and change assessment in the mountainous regions. Further, LULC change detection of the Tons river basin and LULC dynamics at decadal frequency are studied to derive adaptation and mitigation strategies. Landscape-level forest disturbance modeling, together with conservation implications, is also included. The watershed management approach is necessary for comprehensive management of land and water resources of any region, where studies on multi-criteria analysis for rainwater harvesting planning and its impact on land use land cover transformations in rain-fed areas using geospatial technologies are presented in this book. The book will be useful for academics, water practitioners, scientists, water managers, environmentalists, and administrators, NGOs, researchers, and students who are actively involved in the application of geospatial technologies in LULC studies, agricultural water management and hydrological modelling and natural disasters for addressing the challenges being posed by climate change while addressing issues of food and water securities
Remote Sensing of Water Resources, Disasters, and Urban Studies
Author: Ph.D., Prasad S. Thenkabail
Publisher: CRC Press
ISBN: 1482217929
Category : Technology & Engineering
Languages : en
Pages : 695
Book Description
This book is the most comprehensive documentation of the scientific and methodological advances that have taken place in understanding remote sensing data, methods, and applications over last 50 years. In a very practical way it demonstrates the experience, utility, methods and models used in studying a wide array of water applications. There are more than 100 leading global experts in the field contributing to this work.
Publisher: CRC Press
ISBN: 1482217929
Category : Technology & Engineering
Languages : en
Pages : 695
Book Description
This book is the most comprehensive documentation of the scientific and methodological advances that have taken place in understanding remote sensing data, methods, and applications over last 50 years. In a very practical way it demonstrates the experience, utility, methods and models used in studying a wide array of water applications. There are more than 100 leading global experts in the field contributing to this work.
Applications of Remote Sensing/ GIS in Water Resources and Flooding Risk Managements
Author: Xianwei Wang /Ed.)
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Sustainable Water Resources Management
Author: Chandra S. P. Ojha
Publisher:
ISBN: 9780784414767
Category : Water resources development
Languages : en
Pages : 0
Book Description
Sustainable Water Resources Management presents the most current thinking on the environmental, social, and political dimensions of sustainably managing the water supply at local, regional, or basin levels.
Publisher:
ISBN: 9780784414767
Category : Water resources development
Languages : en
Pages : 0
Book Description
Sustainable Water Resources Management presents the most current thinking on the environmental, social, and political dimensions of sustainably managing the water supply at local, regional, or basin levels.
Remote Sensing in Hydrology and Water Management
Author: Gert A. Schultz
Publisher: Springer Science & Business Media
ISBN: 3642595839
Category : Science
Languages : en
Pages : 498
Book Description
The book provides comprehensive information on possible applications of remote sensing data for hydrological monitoring and modelling as well as for water management decisions. Mathematical theory is provided only as far as it is necessary for understanding the underlying principles. The book is especially timely because of new programs and sensors that are or will be realised. ESA, NASA, NASDA as well as the Indian and the Brazilian Space Agency have recently launched satellites or developed plans for new sensor systems that will be especially pertinent to hydrology and water management. New techniques are presented whose structure differ from conventional hydrological models due to the nature of remotely sensed data.
Publisher: Springer Science & Business Media
ISBN: 3642595839
Category : Science
Languages : en
Pages : 498
Book Description
The book provides comprehensive information on possible applications of remote sensing data for hydrological monitoring and modelling as well as for water management decisions. Mathematical theory is provided only as far as it is necessary for understanding the underlying principles. The book is especially timely because of new programs and sensors that are or will be realised. ESA, NASA, NASDA as well as the Indian and the Brazilian Space Agency have recently launched satellites or developed plans for new sensor systems that will be especially pertinent to hydrology and water management. New techniques are presented whose structure differ from conventional hydrological models due to the nature of remotely sensed data.
Essential Tools for Water Resources Analysis, Planning, and Management
Author: Omid Bozorg-Haddad
Publisher: Springer Nature
ISBN: 9813342951
Category : Science
Languages : en
Pages : 343
Book Description
This book describes concepts and tools needed for water resources management, including methods for modeling, simulation, optimization, big data analysis, data mining, remote sensing, geographical information system, game theory, conflict resolution, System dynamics, agent-based models, multiobjective, multicriteria, and multiattribute decision making and risk and uncertainty analysis, for better and sustainable management of water resources and consumption, thus mitigating the present and future global water shortage crisis. It presents the applications of these tools through case studies which demonstrate its benefits of proper management of water resources systems. This book acts as a reference for students, professors, industrial practitioners, and stakeholders in the field of water resources and hydrology.
Publisher: Springer Nature
ISBN: 9813342951
Category : Science
Languages : en
Pages : 343
Book Description
This book describes concepts and tools needed for water resources management, including methods for modeling, simulation, optimization, big data analysis, data mining, remote sensing, geographical information system, game theory, conflict resolution, System dynamics, agent-based models, multiobjective, multicriteria, and multiattribute decision making and risk and uncertainty analysis, for better and sustainable management of water resources and consumption, thus mitigating the present and future global water shortage crisis. It presents the applications of these tools through case studies which demonstrate its benefits of proper management of water resources systems. This book acts as a reference for students, professors, industrial practitioners, and stakeholders in the field of water resources and hydrology.
Geospatial Technology for Water Resource Applications
Author: Prashant K. Srivastava
Publisher: CRC Press
ISBN: 1315353822
Category : Nature
Languages : en
Pages : 281
Book Description
This book advances the scientific understanding, development, and application of geospatial technologies related to water resource management. It presents recent developments and applications specifically by utilizing new earth observation datasets such as TRMM/GPM, AMSR E/2, SMOS, SMAP and GCOM in combination with GIS, artificial intelligence, and hybrid techniques. By linking geospatial techniques with new satellite missions for earth and environmental science, the book promotes the synergistic and multidisciplinary activities of scientists and users working in the field of hydrological sciences.
Publisher: CRC Press
ISBN: 1315353822
Category : Nature
Languages : en
Pages : 281
Book Description
This book advances the scientific understanding, development, and application of geospatial technologies related to water resource management. It presents recent developments and applications specifically by utilizing new earth observation datasets such as TRMM/GPM, AMSR E/2, SMOS, SMAP and GCOM in combination with GIS, artificial intelligence, and hybrid techniques. By linking geospatial techniques with new satellite missions for earth and environmental science, the book promotes the synergistic and multidisciplinary activities of scientists and users working in the field of hydrological sciences.