Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers

Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722728496
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
The relationship between the predicted transition location and the first and second modes of instability in two-dimensional supersonic boundary-layer flow on a flat plate is examined. Linear stability theory and the N-factor criterion are used to predict transition location. The effect of heat transfer is also studied; the results demonstrate that the transition reversal phenomenon can be explained by the opposite effect of cooling on the first and second modes of instability. Compressibility of destabilizing at free-stream Mach numbers of 2 to 3.5. The predicted transition location is due to the oblique first modes of instability, up to free-stream Mach numbers between 6 and 6.5. At higher Mach numbers, the predicted transition location is due to a combination of two-dimensional first and second modes of instability. Masad, Jamal A. Unspecified Center NAS1-19299; RTOP 537-03-23-03...

Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers

Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722728496
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
The relationship between the predicted transition location and the first and second modes of instability in two-dimensional supersonic boundary-layer flow on a flat plate is examined. Linear stability theory and the N-factor criterion are used to predict transition location. The effect of heat transfer is also studied; the results demonstrate that the transition reversal phenomenon can be explained by the opposite effect of cooling on the first and second modes of instability. Compressibility of destabilizing at free-stream Mach numbers of 2 to 3.5. The predicted transition location is due to the oblique first modes of instability, up to free-stream Mach numbers between 6 and 6.5. At higher Mach numbers, the predicted transition location is due to a combination of two-dimensional first and second modes of instability. Masad, Jamal A. Unspecified Center NAS1-19299; RTOP 537-03-23-03...

Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers

Relationship Between Transition and Modes of Instability in Supersonic Boundary Layers PDF Author: Jamal A. Masad
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Get Book Here

Book Description


Instability and Transition in Three-dimensional Supersonic Boundary Layers

Instability and Transition in Three-dimensional Supersonic Boundary Layers PDF Author: M. R. Malik
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 602

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Receptivity and Transition to Turbulence of Supersonic Boundary Layers with Surface Roughness

Receptivity and Transition to Turbulence of Supersonic Boundary Layers with Surface Roughness PDF Author: Nicola De Tullio
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A deeper understanding of the different factors that influence the laminar-turbulent transition in supersonic boundary layers will help the design of efficient high-speed vehicles. In this work we study the effects of surface roughness on the stability and transition to turbulence of supersonic boundary layers. The investigation is carried out by direct numerical simulations (DNS) of the compressible Navier-Stokes equations and focuses on the modifications introduced in the transition process by localised roughness elements, for Mach numbers M∞ = 6.0 and M∞ = 2.5, and distributed slender pores at M∞ = 6.0. The first part of the investigation into the effects of localised roughness deals with the receptivity and initial exponential amplification of disturbances in boundary layers subjected to small external perturbations. Different transition scenarios are investigated by considering different free-stream disturbances and roughness elements with different heights. The results show that, for roughness heights approaching the local displacement thickness, transition is dominated by the growth of a number of instability modes in the roughness wake. These modes are damped by wall cooling and their receptivity is found to be more efficient in the case of free-stream disturbances dominated by sound. At M∞ = 6 the growth of Mack modes in the boundary layer is found to play a crucial role in the excitation of the most unstable wake modes. An investigation into the nonlinear stages of transition shows that the breakdown to turbulence starts with nonlinear interactions of the wake instability modes. This leads to the formation of a turbulent wedge behind the roughness element, which spreads laterally following mechanisms similar to those observed for the evolution of compressible turbulent spots. An oblique shock impinging on the transitional boundary layer significantly accelerates the breakdown process and leads to a wider turbulent wedge. The study ends with an analysis of porous walls as a passive method for transition control, which is carried out using a temporal DNS approach. The results show damping of both the primary, of second or Mack mode type, and secondary instabilities and indicate that, despite the high Mack number, first mode waves regain importance in this modified transition scenario.

IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers

IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers PDF Author: Peter W. Duck
Publisher: Springer Science & Business Media
ISBN: 9400917007
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid `cross-flow' disturbances as well as Tollmien-Schlichting and Görtler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.

Instability, Transition, and Turbulence

Instability, Transition, and Turbulence PDF Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
ISBN: 1461229561
Category : Science
Languages : en
Pages : 626

Get Book Here

Book Description
This volume contains the proceedings of the Workshop on In stability, Transition and Turbulence, sponsored by the Institute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC), during July 8 to August 2, 1991. This is the second workshop in the series on the subject. The first was held in 1989, and its proceedings were published by Springer-Verlag under the title "Instability and Transition" edited by M. Y. Hussaini and R. G. Voigt. The objectives of these work shops are to i) expose the academic community to current technologically im portant issues of transition and turbulence in shear flows over the entire speed range, ii) acquaint the academic community with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these capabilities, and iii) accelerate progress in elucidating the fundamental phenomena of transition and turbulence, leading to improved transition and turbulence modeling in design methodologies. The research areas covered in these proceedings include receptiv ity and roughness, nonlinear theories of transition, numerical simu lation of spatially evolving flows, modelling of transitional and fully turbulent flows as well as some experiments on instability and tran sition. In addition a one-day mini-symposium was held to discuss 1 recent and planned experiments on turbulent flow over a backward facing step.

Supersonic Unstable Modes in Hypersonic Boundary Layers with Thermochemical Nonequilibrium Effects

Supersonic Unstable Modes in Hypersonic Boundary Layers with Thermochemical Nonequilibrium Effects PDF Author: Carleton Knisely
Publisher:
ISBN:
Category :
Languages : en
Pages : 221

Get Book Here

Book Description
Mack's second mode has been known to be the dominant disturbance leading to transition to turbulence in traditional hypersonic boundary layer flows at zero angle of attack. Physically, the second mode exists due to trapped acoustic waves within the boundary layer. The second mode has been widely studied and the conditions that stabilize or amplify the second mode are well documented. Predicting the second mode amplification is the basis of contemporary transition prediction techniques such as the eN method. There has been a renewed interest in studying hypersonic boundary layer stability in high-enthalpy flows with highly-cooled walls due to its applicability to experiments and some real flight conditions. One physical phenomenon that occurs in these flows is the creation of a supersonic mode, which is associated with an unstable mode F1 synchronizing with the slow acoustic spectrum. This causes the disturbance to travel upstream supersonically relative to the mean flow outside the boundary layer and radiate sound away from the boundary layer. The supersonic mode has been known to exist for decades, but has until recently been deemed negligible in comparison to the second mode. However, a resurgence in interest in the supersonic mode has shown the supersonic mode to exist in unexpected conditions with considerable peak growth rates compared to the second mode. Namely, recent research in the field has shown the supersonic mode in hot-wall flows, upending the notion that it is an artifact of highly-cooled walls. Additionally, a dominant supersonic mode with significantly larger growth rate than the second mode has been found on very blunt cones. Therefore, because the supersonic mode has not been systematically investigated, the mechanism of its creation and the conditions under which it exists are not yet clear. The objective of this work is to systematically investigate the supersonic mode using numerical and theoretical tools to simulate hypersonic flow over blunt cones. Specifically, this work aims to (1) Determine the characteristics of the supersonic mode and under what conditions it exists, (2) Explore the effectiveness of Linear Stability Theory (LST) on predicting the supersonic mode, and (3) Examine the impact of the supersonic mode on transition to turbulence under realistic flight or experimental conditions. This work explores the supersonic mode on a 1 mm nose radius cone in various free stream flow configurations with a 5-species, two-temperature nonequilibrium gas model for air. A combined approach of Direct Numerical Simulation (DNS) and Linear Stability Theory (LST) are used to numerically investigate the supersonic mode. New LST equations with linearized Rankine-Hugoniot shock relation boundary conditions are derived and verified. In addition, a theoretical schematic has been developed to aid future experimentalists and those performing DNS in visualizing the supersonic mode. Mach numbers of 5 and 10 are considered with wall-temperature-to-free-stream-temperature ratios (Tw/T ) between 0.2 and 1.43. Additionally, the impact of thermochemical nonequilibrium on the supersonic mode is assessed. Both LST and DNS results have confirmed the existence of the supersonic mode on a Mach 5 axisymmetric cold-wall (Tw/T = 0.2) cone. On a warmer wall (Tw/T = 0.667) under the same free stream conditions, LST indicated the supersonic mode was stabilized, although some weak sound radiation was still apparent in DNS. For the Mach 10 case, LST predicted a stable supersonic mode for both wall temperature cases (Tw/T = 1.43, Tw/T = 0.43), however a prominent supersonic mode was observed in DNS. The supersonic mode was determined to be excited via a modal interaction that is ignored in LST due to the independent mode assumption. Furthermore, the supersonic mode in the Mach 10 case with Tw/T = 0.43 exhibited a stronger peak growth rate for the supersonic mode compared to Mack's traditional second mode. These findings illustrate the need for combined LST and DNS studies of the supersonic mode. Overall, this study has determined that the supersonic mode is destabilized by largely the same factors as Mack's second mode. Namely, wall cooling is destabilizing, increasing Mach number/stagnation enthalpy is destabilizing, and vibrational nonequilibrium is stabilizing. The impact of chemical nonequilibrium is hypothesized to be slightly destabilizing, although was not able to be confirmed with the cases explored here. Based on the results presented here, transition prediction analyses relying on LST, such as the eN method, should be used with caution when applied to the supersonic mode, as it has been shown that LST may not fully capture the mechanism of the supersonic mode's creation.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions PDF Author: Holger Babinsky
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Some Effects of Leading-edge Sweep on Boundary-layer Transition at Supersonic Speeds

Some Effects of Leading-edge Sweep on Boundary-layer Transition at Supersonic Speeds PDF Author: Gary T. Chapman
Publisher:
ISBN:
Category : Fluid mechanics
Languages : en
Pages : 38

Get Book Here

Book Description