Regioselectivity in Catalytic Transfer Dehydrogenation and Mechanism of 1-Alkene Isomerization

Regioselectivity in Catalytic Transfer Dehydrogenation and Mechanism of 1-Alkene Isomerization PDF Author: Soumik Biswas
Publisher:
ISBN:
Category : Alkanes
Languages : en
Pages : 143

Get Book Here

Book Description
Bisphosphine and bisphohinite ligated pincer iridium complexes of the type (tBuPCP)IrHn (tBuPCP = C6H3-2,6-(CH2PtBu2)2, n=2, 4) and (tBuPOCOP)Ir(L) (tBuPOCOP = C6H3-2,6-(OPtBu2)2, L = H2, C2H4) are recognized to be outstanding catalyst precursors for transfer dehydrogenation of alkane. Catalytic regioselective dehydrogenation of alkane has a vast prospect. The catalytic transfer dehydrogenation property of these two pincer-iridium catalysts have been exploited in a tandem process known as Alkane Metathesis (AM), a process with enormous potential to transform lower hydrocarbons to higher hydrocarbons suitable for transportation fuel. Our studies here determine the difference between (tBuPCP)IrHn vs. (tBuPOCOP)Ir(L) in catalytic dehydrogenation of n-alkane to give regioselective alkenes is quite considerable. Hence we propose that this difference largely affects AM in the tandem system to result a product distribution of different molecular selectivity. We have found enormous disparity between these two complexes in terms of reactivity in different catalytic transfer dehydrogenation system. Kinetic, mechanistic and DFT (DFT by Prof. K.K.J et al.) studies predict that the subtle difference recognized in sterics exert major differences in the catalytic dehydrogenation. The sterics indicated here are mostly controlled by the alkyl groups attached to two phosphorous atom and the linkage in the pincer arm [-CH2- in (tBuPCP)Ir or -O- in (tBuPOCOP)Ir]. Catalytic 1-alkene isomerization is also another important reaction to study in this context as it has been well recognized to happen in parallel with n-alkane transfer dehydrogenation. All our different mechanistic, kinetic and DFT (DFT by Prof. K.K.J et al.) studies strongly indicate that the operative mechanism of 1-alkene isomerization is not previously presumed hydride-insertion pathway, which is very common in metal-hydride system. Although iridium-hydride plays a major role in catalytic transfer dehydrogenation, evidences indicate n-allyic mechanism of 1-alkene isomerization to be operative in this case. In addition our studies have gone in details to look into the elementary steps for n-allyic pathway. Besides these studies the transfer dehydrogenation technique has been exploited to determine different thermodynamic parameters of cycloalkanes of different ring sizes. In addition we have also investigated the regioselectivity in dehydrogenation of branch alkanes.

Regioselectivity in Catalytic Transfer Dehydrogenation and Mechanism of 1-Alkene Isomerization

Regioselectivity in Catalytic Transfer Dehydrogenation and Mechanism of 1-Alkene Isomerization PDF Author: Soumik Biswas
Publisher:
ISBN:
Category : Alkanes
Languages : en
Pages : 143

Get Book Here

Book Description
Bisphosphine and bisphohinite ligated pincer iridium complexes of the type (tBuPCP)IrHn (tBuPCP = C6H3-2,6-(CH2PtBu2)2, n=2, 4) and (tBuPOCOP)Ir(L) (tBuPOCOP = C6H3-2,6-(OPtBu2)2, L = H2, C2H4) are recognized to be outstanding catalyst precursors for transfer dehydrogenation of alkane. Catalytic regioselective dehydrogenation of alkane has a vast prospect. The catalytic transfer dehydrogenation property of these two pincer-iridium catalysts have been exploited in a tandem process known as Alkane Metathesis (AM), a process with enormous potential to transform lower hydrocarbons to higher hydrocarbons suitable for transportation fuel. Our studies here determine the difference between (tBuPCP)IrHn vs. (tBuPOCOP)Ir(L) in catalytic dehydrogenation of n-alkane to give regioselective alkenes is quite considerable. Hence we propose that this difference largely affects AM in the tandem system to result a product distribution of different molecular selectivity. We have found enormous disparity between these two complexes in terms of reactivity in different catalytic transfer dehydrogenation system. Kinetic, mechanistic and DFT (DFT by Prof. K.K.J et al.) studies predict that the subtle difference recognized in sterics exert major differences in the catalytic dehydrogenation. The sterics indicated here are mostly controlled by the alkyl groups attached to two phosphorous atom and the linkage in the pincer arm [-CH2- in (tBuPCP)Ir or -O- in (tBuPOCOP)Ir]. Catalytic 1-alkene isomerization is also another important reaction to study in this context as it has been well recognized to happen in parallel with n-alkane transfer dehydrogenation. All our different mechanistic, kinetic and DFT (DFT by Prof. K.K.J et al.) studies strongly indicate that the operative mechanism of 1-alkene isomerization is not previously presumed hydride-insertion pathway, which is very common in metal-hydride system. Although iridium-hydride plays a major role in catalytic transfer dehydrogenation, evidences indicate n-allyic mechanism of 1-alkene isomerization to be operative in this case. In addition our studies have gone in details to look into the elementary steps for n-allyic pathway. Besides these studies the transfer dehydrogenation technique has been exploited to determine different thermodynamic parameters of cycloalkanes of different ring sizes. In addition we have also investigated the regioselectivity in dehydrogenation of branch alkanes.

Inventing Reactions

Inventing Reactions PDF Author: Lukas J. Gooßen
Publisher: Springer
ISBN: 3642342868
Category : Science
Languages : en
Pages : 345

Get Book Here

Book Description
Barry Trost: Transition metal catalyzed allylic alkylation.- Jeffrey W. Bode: Reinventing Amide Bond Formation.- Naoto Chatani and Mamoru Tobisu: Catalytic Transformations Involving the Cleavage of C-OMe Bonds.- Gregory L. Beutner and Scott E. Denmark: The Interplay of Invention, Observation and Discovery in the Development of Lewis Base Activation of Lewis Acids for Catalytic Enantioselective Synthesis.- David R. Stuart and Keith Fagnou: The Discovery and Development of a Palladium(II)-Catalyzed Oxidative Cross-Coupling of Two Unactivated Arenes.- Lukas Gooßen and Käthe Gooßen: Decarboxylative Cross-Coupling Reactions.- A. Stephen K. Hashmi: Gold-Catalyzed Organic Reactions.- Ben List: Developing Catalytic Asymmetric Acetalizations.- Steven M. Bischof, Brian G. Hashiguchi, Michael M. Konnick, and Roy A. Periana: The De NovoDesign of CH Bond Hydroxylation Catalysts.- Benoit Cardinal-David, Karl A. Scheidt: Carbene Catalysis: Beyond the Benzoin and Stetter Reactions.- Kenso Soai and Tsuneomi Kawasaki: Asymmetric autocatalysis of pyrimidyl alkanol.- Douglas C. Behenna and Brian M. Stoltz: Natural Products as Inspiration for Reaction Development: Catalytic Enantioselective Decarboxylative Reactions of Prochiral Enolate Equivalents. Hisashi Yamamoto: Acid Catalysis in Organic Synthesis.

Rhodium Catalyzed Hydroformylation

Rhodium Catalyzed Hydroformylation PDF Author: Piet W.N.M. van Leeuwen
Publisher: Springer Science & Business Media
ISBN: 0306469472
Category : Science
Languages : en
Pages : 291

Get Book Here

Book Description
In the last decade there have been numerous advances in the area of rhodium-catalyzed hydroformylation, such as highly selective catalysts of industrial importance, new insights into mechanisms of the reaction, very selective asymmetric catalysts, in situ characterization and application to organic synthesis. The views on hydroformylation which still prevail in the current textbooks have become obsolete in several respects. Therefore, it was felt timely to collect these advances in a book. The book contains a series of chapters discussing several rhodium systems arranged according to ligand type, including asymmetric ligands, a chapter on applications in organic chemistry, a chapter on modern processes and separations, and a chapter on catalyst preparation and laboratory techniques. This book concentrates on highlights, rather than a concise review mentioning all articles in just one line. The book aims at an audience of advanced students, experts in the field, and scientists from related fields. The didactic approach also makes it useful as a guide for an advanced course.

Hydrogen Transfer Reactions

Hydrogen Transfer Reactions PDF Author: Gabriela Guillena
Publisher: Springer
ISBN: 3319430513
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Homogeneous Hydrogenation in Organic Chemistry

Homogeneous Hydrogenation in Organic Chemistry PDF Author: F.J. McQuillin
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 154

Get Book Here

Book Description
Organic chemistry is constantly concerned with effecting reactions at a particular centre in a complex molecule, and if possible with a high and predictable level of stereoselectivity. In the light of much accumulated ex perience within organic chemistry it is usually possible to assess the likeli hood of alternative reaction pathways at least qualitatively. However, well based expectations can be falsified, and the experiments directed to the synthesis of vitamin B12 which led to Woodward's recognition of orbital symmetry control in organic chemistry are an instructive example. Our limi tations in this respect are very much accentuated in the case of hetero geneous reactions, which present additional problems, and except for very well studied instances, heterogeneous catalysis has remained a relatively empirical area of chemistry. Knowledge in this area has, however, been greatly improved by the development of transition metal complexes which replicate the catalytic properties of the metals, and are effective in a homo geneous reaction system. This development has advanced our understanding of catalysis by making it possible to interpret reactions in strictly molecular terms. In addition, these homogeneously active complexes are frequently more selective than their heterogeneous metallic counterparts either in discriminating between different functional centres in a molecule or in of fering better stereoselectivity. Homogeneous catalysts have now been devised for a number of organic chemical reactions, including hydrogenation, carbonylation, polymerisa tion, and isomerisation and dismutation of alkenes.

Europe the Way Ahead

Europe the Way Ahead PDF Author: Organisation for European Economic Co
Publisher: Hassell Street Press
ISBN: 9781014426017
Category :
Languages : en
Pages : 372

Get Book Here

Book Description
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Handbook of Metathesis, Volume 1

Handbook of Metathesis, Volume 1 PDF Author: Robert H. Grubbs
Publisher: John Wiley & Sons
ISBN: 3527694005
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description
The second edition of the Handbook of Metathesis, edited by Nobel Prize Winner Robert H. Grubbs and his team, is available as a 3 Volume set as well as individual volumes. Volume 1, edited by R. H. Grubbs together with A. G. Wenzel focusses on Catalyst Development and Mechanism. The new edition of this set is completely updated (more than 80% new content) and expanded, with a special focus on industrial applications. Written by the "Who-is-Who" of metathesis, this book gives a comprehensive and high-quality overview. It is the perfect and ultimate one-stop-reference source in this field and indispensable for chemists in academia and industry alike. View the set here - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527334246.html Other available volumes: Volume 2: Applications in Organic Synthesis, Editors: R. H. Grubbs and D. J. O´Leary - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339493.html Volume 3: Polymer Synthesis, Editors: R. H. Grubbs and E. Khosravi - http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527339507.html

Modern Reduction Methods

Modern Reduction Methods PDF Author: Pher G. Andersson
Publisher: John Wiley & Sons
ISBN: 3527622128
Category : Science
Languages : en
Pages : 522

Get Book Here

Book Description
With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

Stereoselective Alkene Synthesis

Stereoselective Alkene Synthesis PDF Author: Jianbo Wang
Publisher: Springer
ISBN: 364231824X
Category : Science
Languages : en
Pages : 283

Get Book Here

Book Description
Stereoselective Synthesis of Tetrasubstituted Alkenes via Torquoselectivity-Controlled Olefination of Carbonyl Compounds with Ynolates, by Mitsuru Shindo and Kenji Matsumoto.- Stereoselective Synthesis of Z-Alkenes, by Woon-Yew Siau, Yao Zhang and Yu Zhao.- Stereoselective Synthesis of Mono-fluoroalkenes, by Shoji Hara.- Recent Advances in Stereoselective Synthesis of 1,3-Dienes, by Michael De Paolis, Isabelle Chataigner and Jacques Maddaluno.- Selective Olefination of Carbonyl Compounds via Metal-Catalyzed Carbene Transfer from Diazo Reagents, by Yang Hu and X. Peter Zhang.- Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product, by Xiaoguang Lei and Houhua Li.- Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles, by Yonghong Gu and Shi-Kai Tian.- Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones, by Yan Zhang and Jianbo Wang.

Homogeneous Catalysis

Homogeneous Catalysis PDF Author: Piet W.N.M. van Leeuwen
Publisher: Springer Science & Business Media
ISBN: 1402020007
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
No available as softcover No other book available that gives insight into so many reactions of importance, while the field of homogeneous catalysis is becoming more and more important to organic chemists, industrial chemists, and academia. Gives real insight in the many new and old reactions of importance, based on the author's extensive experience in both teaching and industrial practice. Provide background to chemists trained in a different discipline and graduate and masters students who take catalysis as a main or secondary topic.