Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems

Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems PDF Author: Utkarsh Patel
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Despite vast advancements in computational hardware capabilities, full-wave electromagnetic simulations of many multiscale problems continue to be a daunting task. Multiscale problems are encountered, for example, when modeling interconnects in an integrated circuit or when simulating complex electromagnetic structures. In interconnect problems, the main challenge is to model the multiscale skin effect that develops inside the conductors at high frequency. Similarly, complex electromagnetic structures are multiscale because these surfaces are tens of wavelengths large, while each unit cell often contains subwavelength geometrical features. This thesis presents reduced-order integral equation methods to solve complex multiscale problems. For interconnect problems, it proposes a single-source surface integral equation method to model 2-D and 3-D conductors or dielectrics of arbitrary shape. In this approach, electromagnetic fields inside a conductor or a dielectric object are accurately modeled by a differential surface admittance operator and an equivalent electric current density on the object's surface. Since the proposed method does not use any volumetric unknowns, it is more efficient than volumetric methods encountered in the literature and commercial solvers, which require a fine mesh to model the skin effect. Furthermore, since the proposed approach is single-source, it is more efficient than other surface methods in the literature that require both equivalent electric and magnetic current densities. Numerical results show that the proposed method can be over 100x and 20x faster than commercial FEM solvers for 2-D and 3-D problems, respectively, while consuming significantly lower memory. The proposed surface method for conductors and dielectrics is further generalized to develop the so-called macromodeling technique to simulate complex scatterers. In this technique, a heterogeneous scatterer composed of dielectric and PEC objects is accurately modeled by equivalent electric and magnetic current densities that are introduced on a fictitious surface enclosing the element. The crux of the technique is to solve for unknowns only on the fictitious surface, instead of the scatterers, which results in fewer unknowns. Numerical results show that the proposed macromodeling technique can efficiently simulate electrically large reflectarrays composed of square patches and Jerusalem crosses, that are difficult to simulate even with commercial solvers.

Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems

Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems PDF Author: Utkarsh Patel
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Despite vast advancements in computational hardware capabilities, full-wave electromagnetic simulations of many multiscale problems continue to be a daunting task. Multiscale problems are encountered, for example, when modeling interconnects in an integrated circuit or when simulating complex electromagnetic structures. In interconnect problems, the main challenge is to model the multiscale skin effect that develops inside the conductors at high frequency. Similarly, complex electromagnetic structures are multiscale because these surfaces are tens of wavelengths large, while each unit cell often contains subwavelength geometrical features. This thesis presents reduced-order integral equation methods to solve complex multiscale problems. For interconnect problems, it proposes a single-source surface integral equation method to model 2-D and 3-D conductors or dielectrics of arbitrary shape. In this approach, electromagnetic fields inside a conductor or a dielectric object are accurately modeled by a differential surface admittance operator and an equivalent electric current density on the object's surface. Since the proposed method does not use any volumetric unknowns, it is more efficient than volumetric methods encountered in the literature and commercial solvers, which require a fine mesh to model the skin effect. Furthermore, since the proposed approach is single-source, it is more efficient than other surface methods in the literature that require both equivalent electric and magnetic current densities. Numerical results show that the proposed method can be over 100x and 20x faster than commercial FEM solvers for 2-D and 3-D problems, respectively, while consuming significantly lower memory. The proposed surface method for conductors and dielectrics is further generalized to develop the so-called macromodeling technique to simulate complex scatterers. In this technique, a heterogeneous scatterer composed of dielectric and PEC objects is accurately modeled by equivalent electric and magnetic current densities that are introduced on a fictitious surface enclosing the element. The crux of the technique is to solve for unknowns only on the fictitious surface, instead of the scatterers, which results in fewer unknowns. Numerical results show that the proposed macromodeling technique can efficiently simulate electrically large reflectarrays composed of square patches and Jerusalem crosses, that are difficult to simulate even with commercial solvers.

Integral Equation Methods for Electromagnetic and Elastic Waves

Integral Equation Methods for Electromagnetic and Elastic Waves PDF Author: Weng Cho Chew
Publisher: Morgan & Claypool Publishers
ISBN: 1598291483
Category : Elastic waves
Languages : en
Pages : 259

Get Book Here

Book Description
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms

Integral Equation Methods for Electromagnetics

Integral Equation Methods for Electromagnetics PDF Author: Nobuaki Kumagai
Publisher: Artech House Publishers
ISBN:
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
Details the methods for solving electromagnetic wave problems using the integral equation formula. This text limits the use of mathematics to the level of standard undergraduate students and explains all the derivations and transformations of equations in detail.

Integral Equations and Iteration Methods in Electromagnetic Scattering

Integral Equations and Iteration Methods in Electromagnetic Scattering PDF Author: A. B. Samokhin
Publisher: Walter de Gruyter
ISBN: 3110942046
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description


Integral Equation Methods for Electromagnetics

Integral Equation Methods for Electromagnetics PDF Author: Nagayoshi Morita
Publisher:
ISBN: 9780608013473
Category :
Languages : en
Pages : 354

Get Book Here

Book Description


Theory and Computation of Electromagnetic Fields in Layered Media

Theory and Computation of Electromagnetic Fields in Layered Media PDF Author: Vladimir Okhmatovski
Publisher: John Wiley & Sons
ISBN: 1119763193
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory PDF Author: David Colton
Publisher: SIAM
ISBN: 1611973163
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.

Numerical Methods in Electromagnetic Fields

Numerical Methods in Electromagnetic Fields PDF Author: V. Subbarao
Publisher: Alpha Science International, Limited
ISBN: 9781842656891
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Numerical solution of electromagnetic field problems arise in high frequency - light current and low frequency - heavy current situations. Such problems are governed by Maxwell field equations in differential and integral form and their solution is dependent upon ht geometry, properties of the medium, and the boundary and initial conditions. Elliptic partial differential equations, such as the Laplace, poisson and Helmholtz equations, are associated with steady state phenomena, i.e., boundary value problems usually modeling closed or bounded solution regions. Parabolic equations are generally associated with problems of diffusion as electromagnetic field penetration and related effects of eddy current phenomena. Hyperbolic equations arise in propagation problems, an example being the electromagnetic wave equation. The solution region is usually open so that a solution advances outwards indefinitely from initial conditions while always satisfying specified boundary conditions. Access to high speed computers and numerical methods has enabled us to solve many complex electromagnetic problems faster and at less cost. Of even greater significance is the fact that the approach enables us to undertake problems that could never have been attempted without them.

Logarithmic Integral Equations in Electromagnetics

Logarithmic Integral Equations in Electromagnetics PDF Author: IU. IUrii Viktorovich Shestopalov
Publisher: VSP
ISBN: 9789067643221
Category : Mathematics
Languages : en
Pages : 140

Get Book Here

Book Description
This book presents an extensive overview of logarithmic integral operators with kernels depending on one or several complex parameters. Solvability of corresponding boundary value problems and determination of characteristic numbers are analyzed by considering these operators as operator-value functions of appropriate complex (spectral) parameters. Therefore, the method serves as a useful addition to classical approaches. Special attention is given to the analysis of finite-meromorphic operator-valued functions, and explicit formulas for some inverse operators and characteristic numbers are developed, as well as the perturbation technique for the approximate solution of logarithmic integral equations. All essential properties of the generalized single- and double-layer potentials with logarithmic kernels and Green's potentials are considered. Fundamentals of the theory of infinite-matrix summation operators and operator-valued functions are presented, including applications to the solution of logarithmic integral equations. Many boundary value problems for the two-dimensional Helmholtz equation are discussed and explicit formulas for Green's function of canonical domains with separated logarithmic singularities are presented.

Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems

Fast and Well-Conditioned Integral Equation Solvers for Low-Frequency Electromagnetic Problems PDF Author: Qin Liu
Publisher:
ISBN: 9781361013502
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Fast and Well-conditioned Integral Equation Solvers for Low-frequency Electromagnetic Problems" by Qin, Liu, 刘{274b4d}, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Inspired by the important low frequency applications, such as the integrate circuits, the nano electromagnetic compatibility and quantum optics, several aspects of the computational electromagnetic low-frequency problems in surface integral equation (SIE) are carefully investigated in this dissertation. Firstly a capacitive model is studied that the convergence of the matrix system is co-determined by both the condition of the matrix and the righthand-side excitation. In a current solution, the weighted contributions from different singular vectors are not only decided by the corresponding singular values but also the right-hand side. The convergence of the capacitive problems is guaranteed by the fact that the singular vectors corresponding to the small singular values are not excited under the delta-gap source. The dominant charge currents are enough to capture the capacitive physics. Detailed spectral analysis with right-hand side effect validates the proposed theory. Secondly, in order to overcome the low-frequency inaccuracy problem for open capacitive structures in CMP-EFIE, a perturbed CMP-EFIE is proposed to extract accurate high-order current at low frequencies. Further study of the capacitive problems in CMP-EFIE utilizes a simplified two-term system by removing the contribution from the hypersingular preconditioned term, which captures the correct physics without doing the perturbation steps. The afore-built right-hand side analysis theory is applied here to explain the stability and accuracy of the simplified CMP-EFIE system. Thirdly, a point testing system is constructed to eliminate the nontrivial nullspaces of the static MFIE systems by enforcing extra zero magnetic flux conditions at the testing points locations. The projection of the current solution onto the magnetostatic nullspaces is truncated accordingly, thus the system convergence can be much improved without losing any accuracy. Finally, the electromagnetic solution is obtained from a potential-based integral equation solver, capturing electrostatic physics from the scalar potential formulation and magnetostatic physics from the vector potential formulation. The combination of the two formulations reveals the correct solution and physics at low frequencies. And the equations, formulated with the potential quantities, make it possible to couple with quantum effects theories. The resulting system appears to be a symmetric saddle point problem, where the efficiency of the iterative solver can be well-solved by a typical appropriate constraint preconditioner. The stability and capability of the new system in solving different kinds of electromagnetic problems are validated over a wide range of frequency range. The research topics in this dissertation cover different aspects of low frequency integral equation solvers, aiming at fast, stable, wide-band and accurate integral algorithms. Subjects: Integral equations Electromagnetic fields - Mathematical models