Reconfigurable Switched-Capacitor Power Converters

Reconfigurable Switched-Capacitor Power Converters PDF Author: Dongsheng Ma
Publisher: Springer Science & Business Media
ISBN: 1461441870
Category : Technology & Engineering
Languages : en
Pages : 182

Get Book Here

Book Description
This book provides readers specializing in ultra-low power supply design for self-powered applications an invaluable reference on reconfigurable switched capacitor power converters. Readers will benefit from a comprehensive introduction to the design of robust power supplies for energy harvesting and self-power applications, focusing on the use of reconfigurable switched capacitor based DC-DC converters, which is ideal for such applications. Coverage includes all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs.

Reconfigurable Switched-Capacitor Power Converters

Reconfigurable Switched-Capacitor Power Converters PDF Author: Dongsheng Ma
Publisher: Springer Science & Business Media
ISBN: 1461441870
Category : Technology & Engineering
Languages : en
Pages : 182

Get Book Here

Book Description
This book provides readers specializing in ultra-low power supply design for self-powered applications an invaluable reference on reconfigurable switched capacitor power converters. Readers will benefit from a comprehensive introduction to the design of robust power supplies for energy harvesting and self-power applications, focusing on the use of reconfigurable switched capacitor based DC-DC converters, which is ideal for such applications. Coverage includes all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs.

Design and Analysis of Switched-capacitor Based Partial Power Architecture for Radio Frequency DC-DC Power Conversion with Gallium Nitride Power Devices

Design and Analysis of Switched-capacitor Based Partial Power Architecture for Radio Frequency DC-DC Power Conversion with Gallium Nitride Power Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis investigates a new reconfigurable switched-capacitor (SC) based partial power architecture which enhances the performance of resonant DC/DC converters operating at radio frequency (RF) with gallium nitride (GaN) power devices to address challenges in telecommunication brick DC/DC converters. The proposed architecture has a comprehensive compatibility with existing RF and SC topologies and improves the performance of RF converters through partitioning of energy conversion stage and output regulation stage. Emerging new wide bandgap devices like GaN FETs enable a higher power density DC/DC converter design. A wider input range, larger voltage conversion ratio, smaller size, and excellent transient performance are expected. The prototype of the proposed GaN reconfigurable SC-based partial power RF converter comprises of a 20 MHz resonant single-ended-primary-inductor-converter (SEPIC) as a regulated stage and a high-efficiency 2 MHz reconfigurable SC as an unregulated stage. The GaN RF resonant SEPIC regulates the output using a robust ON/OFF control scheme, which enables fast transient responses. The high-efficiency GaN reconfigurable SC provides 1:1, 2:1 and 3:1 voltage conversion ratio which widens the input voltage range. A full time-domain, closed-form analytical model for RF resonant SEPIC has been developed, and new design methodology has been proposed for the GaN reconfigurable SC to address the design challenges at megahertz. The electromagnetic interference (EMI) characteristics of the prototype have also been investigated and evaluated by experiments. An alternative control scheme and PCB layout guidelines have been developed for EMI reduction.

Advanced Multiphasing Switched-Capacitor DC-DC Converters

Advanced Multiphasing Switched-Capacitor DC-DC Converters PDF Author: Nicolas Butzen
Publisher: Springer Nature
ISBN: 3030387356
Category : Technology & Engineering
Languages : en
Pages : 160

Get Book Here

Book Description
This book gives a detailed analysis of switched-capacitor DC-DC converters that are entirely integrated on a single chip and establishes that these converters are mainly limited by the large parasitic coupling, the low capacitor energy density, and the fact that switched-capacitor converter topologies only have a fixed voltage conversion ratio. The authors introduce the concept of Advanced Multiphasing as a way to circumvent these limitations by having multiple out-of-phase parallel converter cores interact with each other to minimize capacitor charging losses, leading to several techniques that demonstrate record efficiency and power-density, and even a fundamentally new type of switched-capacitor topology that has a continuously-scalable conversion ratio. Provides single-source reference to the recently-developed Advanced Multiphasing concept; Enables greatly improved performance and capabilities in fully integrated switched-capacitor converters; Enables readers to design DC-DC converters, where multiple converter cores are put in parallel and actively interact with each other over several phases to improve their capabilities.

An 85%-efficiency Reconfigurable Multiphase Switched Capacitor DC-DC Converter Utilizing Frequency, Switch Size, and Interleaving Scaling Techniques

An 85%-efficiency Reconfigurable Multiphase Switched Capacitor DC-DC Converter Utilizing Frequency, Switch Size, and Interleaving Scaling Techniques PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Fully Integrated Switched-Capacitor PMU for IoT Nodes

Fully Integrated Switched-Capacitor PMU for IoT Nodes PDF Author: Ricardo Madeira
Publisher: Springer Nature
ISBN: 3031147014
Category : Technology & Engineering
Languages : en
Pages : 174

Get Book Here

Book Description
This book provides a step-by-step methodology and system design that can be used to design a fully integrated PMU using SC DC-DC converters, for any CMOS technology. The authors discuss trade-offs between power density and efficiency of the methodology for the 130 nm CMOS technology, and how to implement it on other CMOS technologies. The book describes the state-of-the-art of fully or near-fully integrated SC DC-DC converters with multiple conversion ratios and the techniques used to enhance the overall performance of these converters. Coverage includes the trade-off between the number of conversion ratios and overall extracted efficiency from a supercapacitor, as well as the sizing of the converter cells according to the desired output power and maximum clock frequency. The authors also describe in detail the design of the fundamental blocks for the converter operation, which includes a secondary control loop using capacitance modulation by sensing the clock frequency.

Hybrid Switched-capacitor Power Converter Techniques

Hybrid Switched-capacitor Power Converter Techniques PDF Author: Nathan Miles Ellis
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Power conversion is a necessity in almost all modern electric systems and machines: energy must be regulated and delivered in the intended manner if a system is to perform well, or at all. Power converters, the electronic circuits used to control this energy flow, have been a subject of intense study and rapid development in recent years and are widely acknowledged to be a fundamental enabler for modern day human societal capabilities. Many market sectors have strongly advocated for further development of energy conversion systems with improved efficiency and power density as these traits often directly dictate practical viability. While advancements in semiconductor device physics have yielded improved parts for use inconverter solutions, it is becoming apparent that there is additional massive potential and merit in revisiting fundamental converter topologies and circuit techniques. To date, power converters that use capacitors as their primary energy transfer elements (termed "switchedcapacitor" power converters) are far less ubiquitous than their switched-inductor counterparts, and seemingly for good reason: characteristics such as poor output regulation and intrinsic transient inrush currents that lead to inefficiency have largely prevented switched-capacitor topologies from gaining practical consideration in general power converter markets. Solutions to these negative attributes are strongly desired as capacitors can offer energy densities up to three orders of magnitude greater than inductors, with these energy transfer elements typically consuming the majority of a power converter's weight/volume. Recent work has demonstrated significant potential for hybrid switched-capacitor-inductor converter techniques: here, small inductive element(s) are used to eliminate the conventional drawbacks of a converter which is predominantly capacitor based. The hybridized approach helps unlock the full potential of capacitor-based converters and has been demonstrated to offer compelling results at the cost of added complexity. This work offers an exploration into a collection of state-of-the-art power converter techniques and topological methods, primarily within the field of hybridized switched-capacitor-inductor converters. The first two chapters give a background on fundamental considerations such as conventional loss mechanisms and the slow-switching-limit (SSL), as well as several established loss mitigation techniques. An integrated converter system and its associated functional blocks is then discussed in Chapters 3 and 4, exemplifying a hybridized two-stage converter and illustrating the implementation of several loss mitigation methods and practical circuit techniques. Next, several hybridized variations of the Dickson topology are discussed: this family of DC-DC converters is well suited for non-isolated large voltage conversion ratios. A number of these variants are proposed here for the first time, illustrating significant potential for further converter development. The steady-state bias points, resonant switching frequency, duty cycle and voltage ripple as a function of load are calculated for several example converters, including the non-trivial case of a converter undergoing split-phase operation and whose operating points exhibit a strong load dependence. To facilitate comparative analysis between topologies, a mathematical method is presented that characterizes the total energy density utilization of fly capacitors throughout a converter, accounting for large voltage ripple and iii highly nonlinear reverse-bias transitions. This analysis assists with optimal topology selection as energy density utilization directly dictates the required capacitor volume at a specified power level and switching frequency. An expanded family of fly capacitor networks is then introduced in Chapter 6; here it is shown that there are a large number of unexplored yet practical fly capacitor configurations that are eligible for use in hybridized converters. It is calculated that a 6-7 % reduction in capacitor volume can be achieved relative to conventional Dickson fly capacitor networks, while preserving the desirable characteristic of equal voltage ripple on its branches. N-phase and split-phase switching methods and their respective trade-offs are then discussed in detail, offering control techniques that allow a departure from conventional two-phase operation while retaining high-efficiency zero-voltage and zero-current switching (ZVS/ZCS) conditions. A Cockcroft-Walton prototype demonstrates both methods implemented on the same piece of hardware, significantly improving the efficiency range with respect to load and resulting in a state-of-the-art power density of 483.3 kW/liter (7, 920W/inch3). Next, a method termed "resonant charge redistribution" (RCR) is proposed that greatly reduces output capacitance (C[subscript OSS]) related switching losses in all switches of a complex switched-capacitor network. Despite little effort being put towards optimization, a prototype using RCR measures a 61 % reduction in total losses at light load for a near negligible 0.74 % increase in total solution volume. Lastly, resonant gate drive techniques are discussed. Here, within a proposed resonant gate-driver topology, a capacitive decoupling technique is demonstrated that allows power to be delivered to a "flying" high-side N-channel device which commutes between two variable voltages. The implemented prototype achieves up to a 72 % reduction in gating loss when switching over 20 MHz and with rise/fall times ≤ 7 ns. Combining several of the novel techniques described herein can result in near complete mitigation of all primary switching loss mechanisms observed throughout the complex structure of a switched-capacitor converter network. This relatively new field of hybridized converter design has already yielded converters with record-breaking performance, as is demonstrated here. With contemporary techniques, including those described in this work, the field of power electronics is on the cusp of seeing widespread dramatic improvements in energy handling capability, power density, specific power and efficiency at reduced cost, with huge potential for growth and improved energy consumption in both developed and emerging markets.

Design of Area- and Power-efficient Dual-output Switched-capacitor DC-DC Converters

Design of Area- and Power-efficient Dual-output Switched-capacitor DC-DC Converters PDF Author: Zhe Hua
Publisher:
ISBN:
Category : DC-to-DC converters
Languages : en
Pages :

Get Book Here

Book Description
Power management integrated circuits have found wide applications in all battery-powered electronic systems like smartphones, wireless sensors, etc., to convert a time-varying unregulated battery voltage to constant regulated DC output voltages for different internal functional blocks of the system. With the increase in the complexity of today’s electronic systems, a multiple-output power management system is desired to optimize the power consumption of each loading block such that the power dissipation of the whole system can be minimized to extend the battery run-time. Driven by the demands for high power efficiency and high area efficiency in generating multiple outputs for energy-harvesting and portable applications, the multiple-output switched-capacitor (SC) DC-DC converter is becoming a popular candidate as it does not require any costly and bulky inductor for energy storage, thereby minimizing the overall converter volume and EMI noise. Moreover, flying capacitors as energy-storage components and power transistors as energy-transfer paths in the multiple-output SC DC-DC converters can be shared by different outputs such that the number of required flying capacitors and power transistors can be minimized to optimize both area efficiency and energy density. In the first part of this research, a reconfigurable step-up dual-output SC DC-DC regulator is introduced, analyzed and verified for low power energy-harvesting applications. A sub-harmonic adaptive-on-time (SHAOT) control scheme is proposed to improve the light-load power efficiency under different load currents, maintain low output ripples under different input voltages, provide predictable output noise spectrum, and minimize output cross regulation between both outputs in the SC DC-DC regulator. In the second part of this research, a battery-connected reconfigurable step-down dual-output SC DC-DC regulator is developed to deliver a maximum load of 1.2A for portable applications. With flying-capacitor sharing and an all-nMOS power stage, the proposed dual-output SC power stage is efficient in both chip and board areas. A switch-resistance-modulation (SRM) control scheme is also proposed to provide small output voltage ripples with a small load capacitance under 100s-of-mA load and to minimize output cross regulation between two outputs under large load-step variations.

Power Systems-On-Chip

Power Systems-On-Chip PDF Author: Bruno Allard
Publisher: John Wiley & Sons
ISBN: 1119377684
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet-of-things. Presentation is not about state-of-the-art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade-offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay-person.

Design of Power Management Integrated Circuits

Design of Power Management Integrated Circuits PDF Author: Bernhard Wicht
Publisher: John Wiley & Sons
ISBN: 1119123062
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
Comprehensive resource on power management ICs affording new levels of functionality and applications with cost reduction in various fields Design of Power Management Integrated Circuits is a comprehensive reference for power management IC design, covering the circuit design of main power management circuits like linear and switched-mode voltage regulators, along with sub-circuits such as power switches, gate drivers and their supply, level shifters, the error amplifier, current sensing, and control loop design. Circuits for protection and diagnostics, as well as aspects of the physical design like lateral and vertical power delivery, pin-out, floor planning, grounding/supply guidelines, and packaging, are also addressed. A full chapter is dedicated to the design of integrated passives. The text illustrates the application of power management integrated circuits (PMIC) to growth areas like computing, the internet of Things, mobility, and renewable energy. Includes numerous real-world examples, case studies, and exercises illustrating key design concepts and techniques. Offering a unique insight into this rapidly evolving technology through the author's experience developing PMICs in both the industrial and academic environment, Design of Power Management Integrated Circuits includes information on: Capacitive, inductive and hybrid DC-DC converters and their essential circuit blocks, covering error amplifiers, comparators, and ramp generators Sensing, protection, and diagnostics, covering thermal protection, inductive loads and clamping structures, under-voltage, reference and power-on reset generation Integrated MOS, MOM and MIM capacitors, integrated inductors Control loop design and PWM generation ensuring stability and fast transient response; subharmonic oscillations in current mode control (analysis and circuit design for slope compensation) DC behavior and DC-related circuit design, covering power efficiency, line and load regulation, error amplifier, dropout, and power transistor sizing Commonly used level shifters (including sizing rules) and cascaded (tapered) driver sizing and optimization guidelines Optimizing the physical design considering packaging, floor planning, EMI, pinout, PCB design and thermal design Design of Power Management Integrated Circuits is an essential resource on the subject for circuit designers/IC designers, system engineers, and application engineers, along with advanced undergraduate students and graduate students in related programs of study.

The IoT Physical Layer

The IoT Physical Layer PDF Author: Ibrahim (Abe) M. Elfadel
Publisher: Springer
ISBN: 3319931008
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book documents some of the most recent advances on the physical layer of the Internet of Things (IoT), including sensors, circuits, and systems. The application area selected for illustrating these advances is that of autonomous, wearable systems for real-time medical diagnosis. The book is unique in that it adopts a holistic view of such systems and includes not only the sensor and processing subsystems, but also the power, communication, and security subsystems. Particular attention is paid to the integration of these IoT subsystems as well as the prototyping platforms needed for achieving such integration. Other unique features include the discussion of energy-harvesting subsystems to achieve full energy autonomy and the consideration of hardware security as a requirement for the integrity of the IoT physical layer. One unifying thread of the various designs considered in this book is that they have all been fabricated and tested in an advanced, low-power CMOS process, namely GLOBALFOUNDRIES 65nm CMOS LPe.