Discrete Convex Analysis

Discrete Convex Analysis PDF Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

Discrete Convex Analysis

Discrete Convex Analysis PDF Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

Discrete Mathematics and Applications

Discrete Mathematics and Applications PDF Author: Andrei M. Raigorodskii
Publisher: Springer Nature
ISBN: 3030558576
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
Advances in discrete mathematics are presented in this book with applications in theoretical mathematics and interdisciplinary research. Each chapter presents new methods and techniques by leading experts. Unifying interdisciplinary applications, problems, and approaches of discrete mathematics, this book connects topics in graph theory, combinatorics, number theory, cryptography, dynamical systems, finance, optimization, and game theory. Graduate students and researchers in optimization, mathematics, computer science, economics, and physics will find the wide range of interdisciplinary topics, methods, and applications covered in this book engaging and useful.

Research Trends in Combinatorial Optimization

Research Trends in Combinatorial Optimization PDF Author: William J. Cook
Publisher: Springer Science & Business Media
ISBN: 3540767967
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
The editors and authors dedicate this book to Bernhard Korte on the occasion of his seventieth birthday. We, the editors, are happy about the overwhelming feedback to our initiative to honor him with this book and with a workshop in Bonn on November 3–7,2008.Althoughthiswouldbeareasontolookback,wewouldratherliketolook forward and see what are the interesting research directions today. This book is written by leading experts in combinatorial optimization. All - pers were carefully reviewed, and eventually twenty-three of the invited papers were accepted for this book. The breadth of topics is typical for the eld: combinatorial optimization builds bridges between areas like combinatorics and graph theory, submodular functions and matroids, network ows and connectivity, approximation algorithms and mat- matical programming, computational geometry and polyhedral combinatorics. All these topics are related, and they are all addressed in this book. Combi- torial optimization is also known for its numerous applications. To limit the scope, however, this book is not primarily about applications, although some are mentioned at various places. Most papers in this volume are surveys that provide an excellent overview of an activeresearcharea,butthisbookalsocontainsmanynewresults.Highlightingmany of the currently most interesting research directions in combinatorial optimization, we hope that this book constitutes a good basis for future research in these areas.

Convex Analysis and Variational Problems

Convex Analysis and Variational Problems PDF Author: Ivar Ekeland
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Submodular Functions and Optimization

Submodular Functions and Optimization PDF Author: Satoru Fujishige
Publisher: Elsevier
ISBN: 008046162X
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics

Convex Functions and Their Applications

Convex Functions and Their Applications PDF Author: Constantin P. Niculescu
Publisher: Springer
ISBN: 3319783378
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Thorough introduction to an important area of mathematics Contains recent results Includes many exercises

Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization PDF Author: Aharon Ben-Tal
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Algebraic and Geometric Ideas in the Theory of Discrete Optimization PDF Author: Jesus A. De Loera
Publisher: SIAM
ISBN: 1611972434
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.

Convexity and Duality in Optimization

Convexity and Duality in Optimization PDF Author: Jacob Ponstein
Publisher: Springer Science & Business Media
ISBN: 3642456103
Category : Business & Economics
Languages : en
Pages : 151

Get Book Here

Book Description
The analysis and optimization of convex functions have re ceived a great deal of attention during the last two decades. If we had to choose two key-words from these developments, we would retain the concept of ~ubdi66~e~ and the duality theo~y. As it usual in the development of mathematical theories, people had since tried to extend the known defi nitions and properties to new classes of functions, including the convex ones. For what concerns the generalization of the notion of subdifferential, tremendous achievements have been carried out in the past decade and any rna·· thematician who is faced with a nondifferentiable nonconvex function has now a panoply of generalized subdifferentials or derivatives at his disposal. A lot remains to be done in this area, especially concerning vecto~-valued functions ; however we think the golden age for these researches is behind us. Duality theory has also fascinated many mathematicians since the underlying mathematical framework has been laid down in the context of Convex Analysis. The various duality schemes which have emerged in the re cent years, despite of their mathematical elegance, have not always proved as powerful as expected.

Algorithms -- ESA 2011

Algorithms -- ESA 2011 PDF Author: Camil Demetrescu
Publisher: Springer
ISBN: 3642237193
Category : Computers
Languages : en
Pages : 832

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 19th Annual European Symposium on Algorithms, ESA 2011, held in Saarbrücken, Germany, in September 2011 in the context of the combined conference ALGO 2011. The 67 revised full papers presented were carefully reviewed and selected from 255 initial submissions: 55 out of 209 in track design and analysis and 12 out of 46 in track engineering and applications. The papers are organized in topical sections on approximation algorithms, computational geometry, game theory, graph algorithms, stable matchings and auctions, optimization, online algorithms, exponential-time algorithms, parameterized algorithms, scheduling, data structures, graphs and games, distributed computing and networking, strings and sorting, as well as local search and set systems.