Ranks of Elliptic Curves and Random Matrix Theory

Ranks of Elliptic Curves and Random Matrix Theory PDF Author: J. B. Conrey
Publisher: Cambridge University Press
ISBN: 0521699649
Category : Mathematics
Languages : en
Pages : 5

Get Book Here

Book Description
This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.

Ranks of Elliptic Curves and Random Matrix Theory

Ranks of Elliptic Curves and Random Matrix Theory PDF Author: J. B. Conrey
Publisher: Cambridge University Press
ISBN: 0521699649
Category : Mathematics
Languages : en
Pages : 5

Get Book Here

Book Description
This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.

Ranks of Elliptic Curves and Random Matrix Theory

Ranks of Elliptic Curves and Random Matrix Theory PDF Author: J. B. Conrey
Publisher:
ISBN: 9781139882682
Category : Curves, Elliptic
Languages : en
Pages : 368

Get Book Here

Book Description
This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.

Elliptic Curves, Modular Forms and Iwasawa Theory

Elliptic Curves, Modular Forms and Iwasawa Theory PDF Author: David Loeffler
Publisher: Springer
ISBN: 3319450328
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.

Advances in Two-Dimensional Homotopy and Combinatorial Group Theory

Advances in Two-Dimensional Homotopy and Combinatorial Group Theory PDF Author: Wolfgang Metzler
Publisher: Cambridge University Press
ISBN: 1316600904
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Presents the current state of knowledge in all aspects of two-dimensional homotopy theory. Useful for both students and experts.

Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula PDF Author: Werner Müller
Publisher: Springer
ISBN: 3319414240
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.

Geometric and Cohomological Group Theory

Geometric and Cohomological Group Theory PDF Author: Peter H. Kropholler
Publisher: Cambridge University Press
ISBN: 131662322X
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.

Variational Problems in Differential Geometry

Variational Problems in Differential Geometry PDF Author: Roger Bielawski
Publisher: Cambridge University Press
ISBN: 1139504118
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.

Symmetries and Integrability of Difference Equations

Symmetries and Integrability of Difference Equations PDF Author: Decio Levi
Publisher: Cambridge University Press
ISBN: 1139493841
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
A comprehensive introduction to the subject suitable for graduate students and researchers. This book is also an up-to-date survey of the current state of the art and thus will serve as a valuable reference for specialists in the field.

New Directions in Locally Compact Groups

New Directions in Locally Compact Groups PDF Author: Pierre-Emmanuel Caprace
Publisher: Cambridge University Press
ISBN: 1108349544
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.

Permutation Groups and Cartesian Decompositions

Permutation Groups and Cartesian Decompositions PDF Author: Cheryl E. Praeger
Publisher: Cambridge University Press
ISBN: 131699905X
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.