Quasi-Static State Analysis of Differential, Difference, Integral, and Gradient Systems

Quasi-Static State Analysis of Differential, Difference, Integral, and Gradient Systems PDF Author: Frank Charles Hoppensteadt
Publisher: American Mathematical Soc.
ISBN: 0821852698
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description
Based on a course on advanced topics in differential equations given at the Courant Institute of Mathematical Sciences, this book describes aspects of mathematical modeling, analysis, computer simulation, and visualization in the mathematical sciences and engineering that involve singular perturbations.

Quasi-Static State Analysis of Differential, Difference, Integral, and Gradient Systems

Quasi-Static State Analysis of Differential, Difference, Integral, and Gradient Systems PDF Author: Frank Charles Hoppensteadt
Publisher: American Mathematical Soc.
ISBN: 0821852698
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description
Based on a course on advanced topics in differential equations given at the Courant Institute of Mathematical Sciences, this book describes aspects of mathematical modeling, analysis, computer simulation, and visualization in the mathematical sciences and engineering that involve singular perturbations.

Metastability and Markov State Models in Molecular Dynamics

Metastability and Markov State Models in Molecular Dynamics PDF Author: Christof Schütte
Publisher: American Mathematical Soc.
ISBN: 0821843591
Category : Mathematics
Languages : en
Pages : 141

Get Book Here

Book Description
Applications in modern biotechnology and molecular medicine often require simulation of biomolecular systems in atomic representation with immense length and timescales that are far beyond the capacity of computer power currently available. As a consequence, there is an increasing need for reduced models that describe the relevant dynamical properties while at the same time being less complex. In this book the authors exploit the existence of metastable sets for constructing such a reduced molecular dynamics model, the so-called Markov state model (MSM), with good approximation properties on the long timescales. With its many examples and illustrations, this book is addressed to graduate students, mathematicians, and practical computational scientists wanting an overview of the mathematical background for the ever-increasing research activity on how to construct MSMs for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. This book bridges the gap between mathematical research on molecular dynamics and its practical use for realistic molecular systems by providing readers with tools for performing in-depth analysis of simulation and data-analysis methods. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Mathematical Methods for Analysis of a Complex Disease

Mathematical Methods for Analysis of a Complex Disease PDF Author: F. C. Hoppensteadt
Publisher: American Mathematical Soc.
ISBN: 0821872869
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
Complex diseases involve most aspects of population biology, including genetics, demographics, epidemiology, and ecology. Mathematical methods, including differential, difference, and integral equations, numerical analysis, and random processes, have been used effectively in all of these areas. The aim of this book is to provide sufficient background in such mathematical and computational methods to enable the reader to better understand complex systems in biology, medicine, and the life sciences. It introduces concepts in mathematics to study population phenomena with the goal of describing complicated aspects of a disease, such as malaria, involving several species. The book is based on a graduate course in computational biology and applied mathematics taught at the Courant Institute of Mathematical Sciences in fall 2010. The mathematical level is kept to essentially advanced undergraduate mathematics, and the results in the book are intended to provide readers with tools for performing more in-depth analysis of population phenomena.

Harmonic Analysis

Harmonic Analysis PDF Author: S.R.S. Varadhan
Publisher: American Mathematical Society
ISBN: 1470465078
Category : Mathematics
Languages : en
Pages : 101

Get Book Here

Book Description
Harmonic Analysis is an important tool that plays a vital role in many areas of mathematics as well as applications. It studies functions by decomposing them into components that are special functions. A prime example is decomposing a periodic function into a linear combination of sines and cosines. The subject is vast, and this book covers only the selection of topics that was dealt with in the course given at the Courant Institute in 2000 and 2019. These include standard topics like Fourier series and Fourier transforms of functions, as well as issues of convergence of Abel, Feier, and Poisson sums. At a slightly more advanced level the book studies convolutions with singular integrals, fractional derivatives, Sobolev spaces, embedding theorems, Hardy spaces, and BMO. Applications to elliptic partial differential equations and prediction theory are explored. Some space is devoted to harmonic analysis on compact non-Abelian groups and their representations, including some details about two groups: the permutation group and SO(3). The text contains exercises at the end of most chapters and is suitable for advanced undergraduate students as well as first- or second-year graduate students specializing in the areas of analysis, PDE, probability or applied mathematics.

Elliptic Partial Differential Equations

Elliptic Partial Differential Equations PDF Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821853139
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Linear Algebra II

Linear Algebra II PDF Author: Frederick P. Greenleaf
Publisher: American Mathematical Soc.
ISBN: 1470454254
Category : Education
Languages : en
Pages : 288

Get Book Here

Book Description
This book is the second of two volumes on linear algebra for graduate students in mathematics, the sciences, and economics, who have: a prior undergraduate course in the subject; a basic understanding of matrix algebra; and some proficiency with mathematical proofs. Both volumes have been used for several years in a one-year course sequence, Linear Algebra I and II, offered at New York University's Courant Institute. The first three chapters of this second volume round out the coverage of traditional linear algebra topics: generalized eigenspaces, further applications of Jordan form, as well as bilinear, quadratic, and multilinear forms. The final two chapters are different, being more or less self-contained accounts of special topics that explore more advanced aspects of modern algebra: tensor fields, manifolds, and vector calculus in Chapter 4 and matrix Lie groups in Chapter 5. The reader can choose to pursue either chapter. Both deal with vast topics in contemporary mathematics. They include historical commentary on how modern views evolved, as well as examples from geometry and the physical sciences in which these topics are important. The book provides a nice and varied selection of exercises; examples are well-crafted and provide a clear understanding of the methods involved.

Linear Algebra I

Linear Algebra I PDF Author: Frederick P. Greenleaf
Publisher: American Mathematical Soc.
ISBN: 1470448718
Category : Algebras, Linear
Languages : en
Pages : 261

Get Book Here

Book Description
This book is the first of two volumes on linear algebra for graduate students in mathematics, the sciences, and economics, who have: a prior undergraduate course in the subject; a basic understanding of matrix algebra; and some proficiency with mathematical proofs. Proofs are emphasized and the overall objective is to understand the structure of linear operators as the key to solving problems in which they arise. This first volume re-examines basic notions of linear algebra: vector spaces, linear operators, duality, determinants, diagonalization, and inner product spaces, giving an overview of linear algebra with sufficient mathematical precision for advanced use of the subject. This book provides a nice and varied selection of exercises; examples are well-crafted and provide a clear understanding of the methods involved. New notions are well motivated and interdisciplinary connections are often provided, to give a more intuitive and complete vision of linear algebra. Computational aspects are fully covered, but the study of linear operators remains the focus of study in this book.

Mathematical Methods of Electromagnetic Theory

Mathematical Methods of Electromagnetic Theory PDF Author: Kurt O. Friedrichs
Publisher: American Mathematical Soc.
ISBN: 1470417111
Category : Science
Languages : en
Pages : 159

Get Book Here

Book Description
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in electro- and magnetostatics, and (c) a thorough discussion of the central importance of the conservation of charge. It is suitable for advanced undergraduate students in mathematics and physics with a background in advanced calculus and linear algebra, as well as mechanics and electromagnetics at an undergraduate level. Apart from minor corrections to the text, the notation was updated in this edition to follow the conventions of modern vector calculus. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Mathematical Models in Developmental Biology

Mathematical Models in Developmental Biology PDF Author: Jerome K. Percus
Publisher: American Mathematical Soc.
ISBN: 147041080X
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
The path from relatively unstructured egg to full organism is one of the most fascinating trajectories in the biological sciences. Its complexity calls for a very high level of organization, with an array of subprocesses in constant communication with each other. These notes introduce an interleaved set of mathematical models representative of research in the last few decades, as well as the techniques that have been developed for their solution. Such models offer an effective way of incorporating reliable data in a concise form, provide an approach complementary to the techniques of molecular biology, and help to inform and direct future research. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Mathematical Methods in Immunology

Mathematical Methods in Immunology PDF Author: Jerome Kenneth Percus
Publisher: American Mathematical Soc.
ISBN: 0821875566
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
Any organism, to survive, must use a variety of defense mechanisms. A relatively recent evolutionary development is that of the adaptive immune system, carried to a quite sophisticated level by mammals. The complexity of this system calls for its encapsulation by mathematical models, and this book aims at the associated description and analysis. In the process, it introduces tools that should be in the armory of any current or aspiring applied mathematician, in the context of, arguably, the most effective system nature has devised to protect an organism from its manifold invisible enemies.