Quantum Transport Properties in Tungsten Ditelluride Based Devices

Quantum Transport Properties in Tungsten Ditelluride Based Devices PDF Author: Xurui Zhang
Publisher:
ISBN:
Category : Quantum Hall effect
Languages : en
Pages :

Get Book Here

Book Description
The success of mechanical exfoliation on graphene has paved a new field of research in two-dimensional (2D) materials. As one of the transition metal dichalcogenides (TMDCs), tungsten ditelluride (WTe2) has attracted a mass of interests since a novel non-saturating positive magnetoresistance was discovered in 2014. A lot of researches in this material have been published, such as band structure studies with angle-resolved photoelectron spectroscopy (ARPES), quantum oscillations in transport measurements, superconductivity in WTe2 etc. It is worth mentioning that the topological properties of WTe2 have been verified in both bulk (type-II Weyl semi-metal) and in monolayer (2D topological insulator) forms. The topological properties make WTe2 a potential candidate for hosting Majorana bound state, which is theoretically predicted to arise from the proximity effect between a s-wave superconductor and the surface states of a topological insulator (TI). This dissertation will present quantum transport studies in multi-layer WTe2, which acts as an intermediate between the bulk and monolayer limits. Our goal is to explore the transport properties in WTe2 itself, and investigate its interaction with other quantum materials, especially superconductors. A series of different types of devices based on multi-layer WTe2, including Hall bars, FET-like devices and Josephson junctions, have been fabricated and measured in the magnetic fields up to 12 T at low temperatures down to 20 mK. In order to improve the performance of the devices, the hexagonal boron nitride (hBN) flakes are used to build sandwiched structures for thin WTe2 flakes. The main results are presented as follows. First, thickness-dependent quantum transport measurements suggest that the novel "turn-on" behavior in WTe2 take the origin of the Kohler's rule in Fermi liquid state. The "turn-on" behavior accompanied by the large magnetoresistance (MR) will be effectively suppressed by the loss of perfect carrier compensation. Strikingly, however, the trend of non-saturation is unaffected at all which indicates the possibility of other origins of the non-saturating MR. In addition, the angle-dependent MR measurements reveal that the electronic 3D nature of multi-layer WTe2 and the Fermi surface anisotropy depends on the sample thickness. Second, we observe an obvious crossover between weak anti-localization (WAL) and weak localization (WL) in an disordered ultrathin WTe2 flake. The mechanism of the crossover shows coexistence and competition among several characteristic lengths, including the dephasing length, the spin-flip length, and the mean free path. Furthermore, the interplay of quantum interference and electron-electron interaction is also observed. Third, an unconventional quasi-3D quantum Hall effect (QHE) is observed in a high quality flake with much lower carrier density and higher mobility than ordinary WTe2. The quasi-3D QHE act as a collection of several weakly-coupled 2D QHE layers, which might be resulted from a dimerization or tetramization effect. Fourth, in the Ta-WTe2-Ta Josephson junctions, supercurrent state is successfully induced into the multi-layer WTe2 by proximity effect. We observe the fast mode superconducting quantum interference pattern, which indicates the presence of edge supercurrent resulted from the intrinsic edge states of WTe2. In addition, the multiple frequencies observed in the interference pattern might be from the terrace structure along the sample edges. Finally, the presence of the multi-dips in differential resistance in the Josephson junctions with incomplete superconducting state marks the multiple Andreev reflections in WTe2, which might be due to the multiple channels formed along the Josephson junction length. Furthermore, the related experimental procedures, improvements and different data processing methods have also been presented in the main text and appendixes.

Quantum Transport Properties in Tungsten Ditelluride Based Devices

Quantum Transport Properties in Tungsten Ditelluride Based Devices PDF Author: Xurui Zhang
Publisher:
ISBN:
Category : Quantum Hall effect
Languages : en
Pages :

Get Book Here

Book Description
The success of mechanical exfoliation on graphene has paved a new field of research in two-dimensional (2D) materials. As one of the transition metal dichalcogenides (TMDCs), tungsten ditelluride (WTe2) has attracted a mass of interests since a novel non-saturating positive magnetoresistance was discovered in 2014. A lot of researches in this material have been published, such as band structure studies with angle-resolved photoelectron spectroscopy (ARPES), quantum oscillations in transport measurements, superconductivity in WTe2 etc. It is worth mentioning that the topological properties of WTe2 have been verified in both bulk (type-II Weyl semi-metal) and in monolayer (2D topological insulator) forms. The topological properties make WTe2 a potential candidate for hosting Majorana bound state, which is theoretically predicted to arise from the proximity effect between a s-wave superconductor and the surface states of a topological insulator (TI). This dissertation will present quantum transport studies in multi-layer WTe2, which acts as an intermediate between the bulk and monolayer limits. Our goal is to explore the transport properties in WTe2 itself, and investigate its interaction with other quantum materials, especially superconductors. A series of different types of devices based on multi-layer WTe2, including Hall bars, FET-like devices and Josephson junctions, have been fabricated and measured in the magnetic fields up to 12 T at low temperatures down to 20 mK. In order to improve the performance of the devices, the hexagonal boron nitride (hBN) flakes are used to build sandwiched structures for thin WTe2 flakes. The main results are presented as follows. First, thickness-dependent quantum transport measurements suggest that the novel "turn-on" behavior in WTe2 take the origin of the Kohler's rule in Fermi liquid state. The "turn-on" behavior accompanied by the large magnetoresistance (MR) will be effectively suppressed by the loss of perfect carrier compensation. Strikingly, however, the trend of non-saturation is unaffected at all which indicates the possibility of other origins of the non-saturating MR. In addition, the angle-dependent MR measurements reveal that the electronic 3D nature of multi-layer WTe2 and the Fermi surface anisotropy depends on the sample thickness. Second, we observe an obvious crossover between weak anti-localization (WAL) and weak localization (WL) in an disordered ultrathin WTe2 flake. The mechanism of the crossover shows coexistence and competition among several characteristic lengths, including the dephasing length, the spin-flip length, and the mean free path. Furthermore, the interplay of quantum interference and electron-electron interaction is also observed. Third, an unconventional quasi-3D quantum Hall effect (QHE) is observed in a high quality flake with much lower carrier density and higher mobility than ordinary WTe2. The quasi-3D QHE act as a collection of several weakly-coupled 2D QHE layers, which might be resulted from a dimerization or tetramization effect. Fourth, in the Ta-WTe2-Ta Josephson junctions, supercurrent state is successfully induced into the multi-layer WTe2 by proximity effect. We observe the fast mode superconducting quantum interference pattern, which indicates the presence of edge supercurrent resulted from the intrinsic edge states of WTe2. In addition, the multiple frequencies observed in the interference pattern might be from the terrace structure along the sample edges. Finally, the presence of the multi-dips in differential resistance in the Josephson junctions with incomplete superconducting state marks the multiple Andreev reflections in WTe2, which might be due to the multiple channels formed along the Josephson junction length. Furthermore, the related experimental procedures, improvements and different data processing methods have also been presented in the main text and appendixes.

Two-Dimensional Nanomaterials Based Polymer Nanocomposites

Two-Dimensional Nanomaterials Based Polymer Nanocomposites PDF Author: Mayank Pandey
Publisher: John Wiley & Sons
ISBN: 1119905095
Category : Technology & Engineering
Languages : en
Pages : 836

Get Book Here

Book Description
Two-Dimensional Nanomaterials-Based Polymer Nanocomposites This book presents an extensive discussion on fundamental chemistry, classifications, structure, unique properties, and applications of various 2D nanomaterials. The advent of graphene in 2004 has brought tremendous attention to two-dimensional (2D) nanomaterials. Lately, this has prompted researchers to explore new 2D nanomaterials for cutting-edge research in diverse fields. Polymer nanocomposites (PNCs) represent a fascinating group of novel materials that exhibit intriguing properties. The unique combination of polymer and nanomaterial not only overcomes the limitations of polymer matrices, but also changes their structural, morphological, and physicochemical properties thereby broadening their application potential. The book, comprising 22 chapters, provides a unique and detailed study of the process involved in the synthesis of 2D nanomaterials, modification strategies of 2D nanomaterials, and numerous applications of 2D nanomaterials-based polymer nanocomposites. The book also emphasizes the existing challenges in the functionalization and exfoliation of 2D nanomaterials as well as the chemical, structural, electrical, thermal, mechanical, and biological properties of 2D nanomaterials-based polymer nanocomposites. The key features of this book are: Provides fundamental information and a clear understanding of synthesis, processing methods, structure and physicochemical properties of 2D materials-based polymer nanocomposites; Presents a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing 2D materials-based polymer nanocomposites; Explores various processing and fabrication methods and emerging applications of 2D materials-based polymer nanocomposites. Audience Engineers and polymer scientists in the electrical, coatings, and biomedical industries will find this book very useful. Advanced students in materials science and polymer science will find it a fount of information.

Semiconductor Devices and Technologies for Future Ultra Low Power Electronics

Semiconductor Devices and Technologies for Future Ultra Low Power Electronics PDF Author: D. Nirmal
Publisher: CRC Press
ISBN: 1000475344
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
This book covers the fundamentals and significance of 2-D materials and related semiconductor transistor technologies for the next-generation ultra low power applications. It provides comprehensive coverage on advanced low power transistors such as NCFETs, FinFETs, TFETs, and flexible transistors for future ultra low power applications owing to their better subthreshold swing and scalability. In addition, the text examines the use of field-effect transistors for biosensing applications and covers design considerations and compact modeling of advanced low power transistors such as NCFETs, FinFETs, and TFETs. TCAD simulation examples are also provided. FEATURES Discusses the latest updates in the field of ultra low power semiconductor transistors Provides both experimental and analytical solutions for TFETs and NCFETs Presents synthesis and fabrication processes for FinFETs Reviews details on 2-D materials and 2-D transistors Explores the application of FETs for biosensing in the healthcare field This book is aimed at researchers, professionals, and graduate students in electrical engineering, electronics and communication engineering, electron devices, nanoelectronics and nanotechnology, microelectronics, and solid-state circuits.

Government Reports Annual Index

Government Reports Annual Index PDF Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 1442

Get Book Here

Book Description
Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 464

Get Book Here

Book Description


INIS Atomindeks

INIS Atomindeks PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1264

Get Book Here

Book Description


Technical Abstract Bulletin

Technical Abstract Bulletin PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 912

Get Book Here

Book Description


Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Get Book Here

Book Description


Inorganic Nanowires

Inorganic Nanowires PDF Author: M. Meyyappan
Publisher: CRC Press
ISBN: 1420067834
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book Here

Book Description
Advances in nanofabrication, characterization tools, and the drive to commercialize nanotechnology products have contributed to the significant increase in research on inorganic nanowires (INWs). Yet few if any books provide the necessary comprehensive and coherent account of this important evolution. Presenting essential information on both popular and emerging varieties, Inorganic Nanowires: Applications, Properties, and Characterization addresses the growth, characterization, and properties of nanowires. Author Meyyappan is the director and senior scientist at Ames Center for Nanotechnology and a renowned leader in nanoscience and technology, and Sunkara is also a major contributor to nanowire literature. Their cutting-edge work is the basis for much of the current understanding in the area of nanowires, and this book offers an in-depth overview of various types of nanowires, including semiconducting, metallic, and oxide varieties. It also includes extensive coverage of applications that use INWs and those with great potential in electronics, optoelectronics, field emission, thermoelectric devices, and sensors. This invaluable reference: Traces the evolution of nanotechnology and classifies nanomaterials Describes nanowires and their potential applications to illustrate connectivity and continuity Discusses growth techniques, at both laboratory and commercial scales Evaluates the most important aspects of classical thermodynamics associated with the nucleation and growth of nanowires Details the development of silicon, germanium, gallium arsenide, and other materials in the form of nanowires used in electronics applications Explores the physical, electronic and other properties of nanowires The explosion of nanotechnology research activities for various applications is due in large part to the advances in the growth of nanowires. Continued development of novel nanostructured materials is essential to the success of so many economic sectors, ranging from computing and communications to transportation and medicine. This volume discusses how and why nanowires are ideal candidates to replace bulk and thin film materials. It covers the principles behind device operation and then adds a detailed assessment of nanowire fabrication, performance results, and future prospects and challenges, making this book a valuable resource for scientists and engineers in just about any field. Co-author Meyya Meyyappan will receive the Pioneer Award in Nanotechnology from the IEEE Nanotechnology Council at the IEEE Nano Conference in Portland, Oregon in August, 2011

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 752

Get Book Here

Book Description