Quantum Independent Increment Processes II

Quantum Independent Increment Processes II PDF Author: Ole E. Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 9783540244073
Category : Distribution
Languages : en
Pages : 364

Get Book Here

Book Description
Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March 9-22, 2003.

Quantum Independent Increment Processes II

Quantum Independent Increment Processes II PDF Author: Ole E. Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 9783540244073
Category : Distribution
Languages : en
Pages : 364

Get Book Here

Book Description
Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March 9-22, 2003.

Quantum Independent Increment Processes II

Quantum Independent Increment Processes II PDF Author: Ole E Barndorff-Nielsen
Publisher: Springer
ISBN: 3540323856
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This is the second of two volumes containing the revised and completed notes of lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present second volume contains the following lectures: "Random Walks on Finite Quantum Groups" by Uwe Franz and Rolf Gohm, "Quantum Markov Processes and Applications in Physics" by Burkhard Kümmerer, Classical and Free Infinite Divisibility and Lévy Processes" by Ole E. Barndorff-Nielsen, Steen Thorbjornsen, and "Lévy Processes on Quantum Groups and Dual Groups" by Uwe Franz.

Quantum Independent Increment Processes I

Quantum Independent Increment Processes I PDF Author: David Applebaum
Publisher: Springer Science & Business Media
ISBN: 9783540244066
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
This volume is the first of two volumes containing the revised and completed notes lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald during the period March 9 – 22, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present first volume contains the following lectures: "Lévy Processes in Euclidean Spaces and Groups" by David Applebaum, "Locally Compact Quantum Groups" by Johan Kustermans, "Quantum Stochastic Analysis" by J. Martin Lindsay, and "Dilations, Cocycles and Product Systems" by B.V. Rajarama Bhat.

Mutational Analysis

Mutational Analysis PDF Author: Thomas Lorenz
Publisher: Springer
ISBN: 3642124712
Category : Mathematics
Languages : en
Pages : 526

Get Book Here

Book Description
Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling.

Nonlinear and Optimal Control Theory

Nonlinear and Optimal Control Theory PDF Author:
Publisher: Springer Science & Business Media
ISBN: 3540776443
Category :
Languages : en
Pages : 368

Get Book Here

Book Description


Holomorphic Dynamical Systems

Holomorphic Dynamical Systems PDF Author: Nessim Sibony
Publisher: Springer Science & Business Media
ISBN: 3642131700
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.

Smooth Ergodic Theory for Endomorphisms

Smooth Ergodic Theory for Endomorphisms PDF Author: Min Qian
Publisher: Springer
ISBN: 3642019544
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Ideal for researchers and graduate students, this volume sets out a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms. Its focus is on the relations between entropy, Lyapunov exponents and dimensions.

Séminaire de Probabilités XLII

Séminaire de Probabilités XLII PDF Author: Catherine Donati-Martin
Publisher: Springer Science & Business Media
ISBN: 3642017622
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
The tradition of specialized courses in the Séminaires de Probabilités is continued with A. Lejay's Another introduction to rough paths. Other topics from this 42nd volume range from the interface between analysis and probability to special processes, Lévy processes and Lévy systems, branching, penalization, representation of Gaussian processes, filtrations and quantum probability.

Pseudo-Differential Operators

Pseudo-Differential Operators PDF Author: Hans G. Feichtinger
Publisher: Springer
ISBN: 3540682686
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.

Regularity and Approximability of Electronic Wave Functions

Regularity and Approximability of Electronic Wave Functions PDF Author: Harry Yserentant
Publisher: Springer
ISBN: 3642122485
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
The electronic Schrodi ̈ nger equation describes the motion of N electrons under Coulomb interaction forces in a eld of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approxim- ing the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simpli ed models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to c- vince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a c- responding mathematical training.