Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems PDF Author: Freddy Dumortier
Publisher: Springer Science & Business Media
ISBN: 3540329021
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems PDF Author: Freddy Dumortier
Publisher: Springer Science & Business Media
ISBN: 3540329021
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Planar Dynamical Systems

Planar Dynamical Systems PDF Author: Yirong Liu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110389142
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.

Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations PDF Author: Zhifen Zhang
Publisher: American Mathematical Soc.
ISBN: 0821841831
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Subriemannian geometries, also known as Carnot-Caratheodory geometries, can be viewed as limits of Riemannian geometries. They also arise in physical phenomenon involving ``geometric phases'' or holonomy. Very roughly speaking, a subriemannian geometry consists of a manifold endowed with a distribution (meaning a $k$-plane field, or subbundle of the tangent bundle), called horizontal together with an inner product on that distribution. If $k=n$, the dimension of the manifold, we get the usual Riemannian geometry. Given a subriemannian geometry, we can define the distance between two points just as in the Riemannian case, except we are only allowed to travel along the horizontal lines between two points. The book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book the author mentions an elementary exposition of Gromov's surprising idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants (diffeomorphism types) of distributions. There is also a chapter devoted to open problems. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail the following four physical problems: Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry: that of a principal bundle endowed with $G$-invariant metrics. Reading the book requires introductory knowledge of differential geometry, and it can serve as a good introduction to this new, exciting area of mathematics. This book provides an introduction to and a comprehensive study of the qualitative theory of ordinary differential equations. It begins with fundamental theorems on existence, uniqueness, and initial conditions, and discusses basic principles in dynamical systems and Poincare-Bendixson theory. The authors present a careful analysis of solutions near critical points of linear and nonlinear planar systems and discuss indices of planar critical points. A very thorough study of limit cycles is given, including many results on quadratic systems and recent developments in China. Other topics included are: the critical point at infinity, harmonic solutions for periodic differential equations, systems of ordinary differential equations on the torus, and structural stability for systems on two-dimensional manifolds. This books is accessible to graduate students and advanced undergraduates and is also of interest to researchers in this area. Exercises are included at the end of each chapter.

Introduction to the Qualitative Theory of Differential Systems

Introduction to the Qualitative Theory of Differential Systems PDF Author: Jaume Llibre
Publisher: Springer Science & Business Media
ISBN: 3034806574
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
The book deals with continuous piecewise linear differential systems in the plane with three pieces separated by a pair of parallel straight lines. Moreover, these differential systems are symmetric with respect to the origin of coordinates. This class of systems driven by concrete applications is of interest in engineering, in particular in control theory and the design of electric circuits. By studying these particular differential systems we will introduce the basic tools of the qualitative theory of ordinary differential equations, which allow us to describe the global dynamics of these systems including the infinity. The behavior of their solutions, their parametric stability or instability and their bifurcations are described. The book is very appropriate for a first course in the qualitative theory of differential equations or dynamical systems, mainly for engineers, mathematicians, and physicists.

A First Course in the Qualitative Theory of Differential Equations

A First Course in the Qualitative Theory of Differential Equations PDF Author: James Hetao Liu
Publisher:
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 584

Get Book Here

Book Description
This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.

Geometric Configurations of Singularities of Planar Polynomial Differential Systems

Geometric Configurations of Singularities of Planar Polynomial Differential Systems PDF Author: Joan C. Artés
Publisher: Springer Nature
ISBN: 3030505707
Category : Mathematics
Languages : en
Pages : 699

Get Book Here

Book Description
This book addresses the global study of finite and infinite singularities of planar polynomial differential systems, with special emphasis on quadratic systems. While results covering the degenerate cases of singularities of quadratic systems have been published elsewhere, the proofs for the remaining harder cases were lengthier. This book covers all cases, with half of the content focusing on the last non-degenerate ones. The book contains the complete bifurcation diagram, in the 12-parameter space, of global geometrical configurations of singularities of quadratic systems. The authors’ results provide - for the first time - global information on all singularities of quadratic systems in invariant form and their bifurcations. In addition, a link to a very helpful software package is included. With the help of this software, the study of the algebraic bifurcations becomes much more efficient and less time-consuming. Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows.

Qualitative Theory Of Odes: An Introduction To Dynamical Systems Theory

Qualitative Theory Of Odes: An Introduction To Dynamical Systems Theory PDF Author: Henryk Zoladek
Publisher: World Scientific
ISBN: 1800612702
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
The Qualitative Theory of Ordinary Differential Equations (ODEs) occupies a rather special position both in Applied and Theoretical Mathematics. On the one hand, it is a continuation of the standard course on ODEs. On the other hand, it is an introduction to Dynamical Systems, one of the main mathematical disciplines in recent decades. Moreover, it turns out to be very useful for graduates when they encounter differential equations in their work; usually those equations are very complicated and cannot be solved by standard methods.The main idea of the qualitative analysis of differential equations is to be able to say something about the behavior of solutions of the equations, without solving them explicitly. Therefore, in the first place such properties like the stability of solutions stand out. It is the stability with respect to changes in the initial conditions of the problem. Note that, even with the numerical approach to differential equations, all calculations are subject to a certain inevitable error. Therefore, it is desirable that the asymptotic behavior of the solutions is insensitive to perturbations of the initial state.Each chapter contains a series of problems (with varying degrees of difficulty) and a self-respecting student should solve them. This book is based on Raul Murillo's translation of Henryk Żołądek's lecture notes, which were in Polish and edited in the portal Matematyka Stosowana (Applied Mathematics) in the University of Warsaw.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems PDF Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Qualitative Theory of Hybrid Dynamical Systems

Qualitative Theory of Hybrid Dynamical Systems PDF Author: Alexey S. Matveev
Publisher: Springer Science & Business Media
ISBN: 0817641416
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.

Theory of Limit Cycles

Theory of Limit Cycles PDF Author: Yanqian Ye
Publisher: American Mathematical Soc.
ISBN: 9780821845189
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Deals with limit cycles of general plane stationary systems, including their existence, nonexistence, stability, and uniqueness. This book also discusses the global topological structure of limit cycles and phase-portraits of quadratic systems.